Question

Consider a spherical shell with radius R and surface charge density: The electric field is given by: if r<R E, 0 if r > R 0 (a) Find the energy stored in the field by: (b) Find the energy stored in the field by: Jall space And compare the result with part (a)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

We rewrite the \hat{z} in the polar coordinates, and that is
  \hat{z}=\hat{r}\cos\theta -\hat{\theta}\sin\theta
And given the electric fields, we have
for r < R,
  \vec{E}_{in}(\vec{r})=-\frac{\sigma_0}{3\epsilon_0}(\hat{r}\cos\theta-\hat{\theta}\sin\theta)
And for r > R, we have
  
  \vec{E}_{out}(\vec{r})=\frac{\sigma_0}{3\epsilon_0}\frac{R^3}{r^3}(3\hat{r}\cos\theta-\hat{r}\cos\theta+\hat{\theta}\sin\theta)
\Rightarrow \vec{E}_{out}(\vec{r})=\frac{\sigma_0}{3\epsilon_0}\frac{R^3}{r^3}(2\hat{r}\cos\theta+\hat{\theta}\sin\theta)
Now the potential defined as
   V(\vec{r})=-\int_{\infty}^{r}\vec{E}.d\vec{r}
So,
  V_{out}(\vec{r})=-\int_{\infty}^{r}\vec{E}_{out}.d\vec{r}
\Rightarrow V_{out}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}\int_{\infty}^{r}\frac{1}{r^3}(2\hat{r}\cos\theta+\hat{\theta}\sin\theta).d\vec{r}
Along the radial paths, we have
   \Rightarrow V_{out}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}\int_{\infty}^{r}\frac{1}{r^3}(2\hat{r}\cos\theta+\hat{\theta}\sin\theta).\hat{r}d{r}
\Rightarrow V_{out}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}2\cos\theta\int_{\infty}^{r}\frac{1}{r^3} d{r}
\Rightarrow V_{out}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}2\cos\theta\bigg[-\frac{1}{2r^2}\bigg]_{\infty}^{r}
\Rightarrow V_{out}(\vec{r})=\frac{\sigma_0R^3}{3\epsilon_0}\frac{\cos\theta}{r^2}
And
   V_{in}(\vec{r})=-\int_{\infty}^{r}\vec{E}.d\vec{r}=-\int_{\infty}^{R}\vec{E}_{out}.d\vec{r}-\int_{R}^{r}\vec{E}_{in}.d\vec{r}
\Rightarrow V_{in}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}\int_{\infty}^{R}\frac{1}{r^3}(2\hat{r}\cos\theta+\hat{\theta}\sin\theta).d\vec{r}-\int_{R}^r \left (-\frac{\sigma_0}{3\epsilon_0} \right )(\hat{r}\cos\theta-\hat{\theta}\sin\theta).d\vec{r}
Along the radial paths, we have
   \Rightarrow V_{in}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}\int_{\infty}^{R}\frac{1}{r^3}(2\hat{r}\cos\theta+\hat{\theta}\sin\theta).\hat{r}d{r}+\frac{\sigma_0}{3\epsilon_0}\int_{R}^r (\hat{r}\cos\theta-\hat{\theta}\sin\theta).\hat{r}d{r}
\Rightarrow V_{in}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}2\cos\theta \int_{\infty}^{R}\frac{1}{r^3}d{r}+\frac{\sigma_0}{3\epsilon_0}\cos\theta \int_{R}^r d{r}
\Rightarrow V_{in}(\vec{r})=-\frac{\sigma_0R^3}{3\epsilon_0}2\cos\theta \bigg[-\frac{1}{2r^2}\bigg]_{\infty}^{R}+\frac{\sigma_0}{3\epsilon_0}\cos\theta \big[r\big]_{R}^r
\Rightarrow V_{in}(\vec{r})=\frac{\sigma_0R^3}{3\epsilon_0} \frac{\cos\theta}{R^2}+\frac{\sigma_0}{3\epsilon_0}\cos\theta (r-R)
\Rightarrow V_{in}(\vec{r})=\frac{\sigma_0R}{3\epsilon_0} {\cos\theta}+\frac{\sigma_0}{3\epsilon_0}\cos\theta (r-R)
\Rightarrow V_{in}(\vec{r})=\frac{\sigma_0}{3\epsilon_0} r{\cos\theta}
a)
  By calculating the surface integral at r = R, we have the expression
   U_a=\frac{1}{2}\oint_S \sigma Vda'
\Rightarrow U_a=\frac{1}{2}\int \sigma_0\cos\theta \frac{\sigma_0}{3\epsilon_0}R \cos\theta ~R^2 \sin\theta d\theta ~d\phi
\Rightarrow U_a=\frac{\sigma_0^2}{6\epsilon_0}R^3\int_0^\pi \cos^2\theta \sin\theta d\theta ~\int_0^{2\pi}d\phi
\Rightarrow U_a=\frac{\sigma_0^2}{6\epsilon_0}R^3~2\pi~ \frac{2}{3}
\Rightarrow U_a=\frac{2\pi \sigma_0^2}{9\epsilon_0}R^3
b)
Using the volume integral over the all space, we have
     U_{b}=\frac{\epsilon_0}{2}\int_{all~space}E^2 ~d^3 r
\Rightarrow U_{b}=\frac{\epsilon_0}{2}\int_{r<R}E_{in}^2 ~d^3 r+\frac{\epsilon_0}{2}\int_{r >R}E_{out}^2 ~d^3 r
\Rightarrow U_{b}=\frac{\epsilon_0}{2}\int_{r<R}\left ( \frac{\sigma_0}{3\epsilon_0} \right )^2 ~d^3 r+\frac{\epsilon_0}{2}\int_{r >R} \left ( \frac{\sigma_0R^3}{3\epsilon_0} \right )^2\frac{1}{r^6}(4\cos^2\theta +\sin^2\theta)~d^3 r
\Rightarrow U_{b}=\frac{\epsilon_0}{2}\left ( \frac{\sigma_0}{3\epsilon_0} \right )^2 \frac{4\pi R^3}{3}+\frac{\epsilon_0}{2}\left ( \frac{\sigma_0R^3}{3\epsilon_0} \right )^2 \int_{R}^{\infty} \frac{r^2~dr}{r^6}\int_0^\pi (4\cos^2\theta +\sin^2\theta)\sin\theta ~d\theta ~\int_0^{2\pi}~d\phi
\Rightarrow U_{b}=\frac{2\pi\sigma^2_0R^3}{27\epsilon_0}+\frac{\epsilon_0}{2}\left ( \frac{\sigma_0R^3}{3\epsilon_0} \right )^2 2\pi\bigg[-\frac{1}{3r^3}\bigg]_{R}^{\infty} \int_0^\pi (3\cos^2\theta +1)\sin\theta ~d\theta
\Rightarrow U_{b}=\frac{2\pi\sigma^2_0R^3}{27\epsilon_0}+\frac{\pi \sigma^2_0R^6}{9\epsilon_0} \frac{1}{3R^3} (2 +2)
\Rightarrow U_{b}=\frac{2\pi\sigma^2_0R^3}{27\epsilon_0}+\frac{4\pi \sigma^2_0R^3}{27\epsilon_0}
\Rightarrow U_{b}=\frac{6\pi\sigma^2_0R^3}{27\epsilon_0}
\Rightarrow U_{b}=\frac{2\pi\sigma^2_0R^3}{9\epsilon_0}
And we have seen that
  U_a =U_{b}=\frac{2\pi\sigma^2_0R^3}{9\epsilon_0}

Add a comment
Know the answer?
Add Answer to:
Consider a spherical shell with radius R and surface charge density: The electric field is given...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT