Question

A circular loop of radius 5.0 cm and resistance 0.4 Ω lays in the horizontal XY...

A circular loop of radius 5.0 cm and resistance 0.4 Ω lays in the horizontal XY plane. A uniform magnetic field is established pointing upwards, that's to say, in the direction of the positive Z axis. At t = 0, the magnitude of the magnetic field is 120 mT, but then it is increasing at a rate of 40 mT/s.
Find the induced current in the loop at t = 1 s, and discuss whether its direction is clockwise or counterclockwise if we look from above.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please check the image below. Let us draw Z axis. the corculan Look of radius (2) - 5 cm -0.05 m. B? The loop is in x-y plane. So, the area of the loop, As

Add a comment
Know the answer?
Add Answer to:
A circular loop of radius 5.0 cm and resistance 0.4 Ω lays in the horizontal XY...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A circular loop of wire of resistance 0.4 Ohm and radius 11 cm, sitting n the...

    A circular loop of wire of resistance 0.4 Ohm and radius 11 cm, sitting n the plane of this paper, is in a uniform magnetic field, directed out of the paper. A counterclockwise induced current of 3.5 mA is measured in the loop. Is the magnetic field increasing or decreasing as time elapses? Explain how you know. At what rate is the magnetic field changing with time?

  • A circular loop of wire of resistance - 0.500 and radius 8.10 cm is in a...

    A circular loop of wire of resistance - 0.500 and radius 8.10 cm is in a uniform magnetic field directed out of the page as in the figure below. A clockwise current of 120 mA is induced in the loop. (a) is the magnetic field increasing or decreasing in time? decreasing (b) Find the rate at which the field is changing with time.

  • A circular loop of wire with radius r= 0.0480m and reistance R = 0.160 Ω is in a region of spatially uniform magnetic field

    A circular loop of wire with radius r= 0.0480m and reistance R = 0.160 Ω is in a region of spatially uniform magnetic field, as shown in the figure. The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 8.00 T and is decreasing dB/ dt = -0.680 T a) Is the induced current in the loop clockwise or counterclockwise? b) What is the rate at which electrical energy is being dissipated...

  • A circular loop of wire with radius 0.0270 m and resistance 0.320 Ω

    A circular loop of wire with radius 0.0270 m and resistance 0.320 Ω is in a region of spatially uniform magnetic field, as shown in the following figure(Figure 1). The magnetic field is directed into the plane of the figure. At t = 0, B = 0. The magnetic field then begins increasing, with B(t) =( 0.400 T/s3)t3 .Part A What is the current in the loop (magnitude) at the instant when B = 1.38 T? Part B What is the direction of the...

  • (2) B-field Curve. A circular ring of radius r = 0.10 m and resistance Ro =...

    (2) B-field Curve. A circular ring of radius r = 0.10 m and resistance Ro = 2.02 sits in a uniform magnetic field pointing out of the page. The graph shows the strength of that field as a function of time (a negative value indicates that the field is pointing into the page at that moment). (a) At what time (or times) is the largest current induced in the ring? (b) Between t=2s and t = 3 s is the...

  • 1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a...

    1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 13.7 Ω resistor to create a closed circuit. During a time interval of 0.121 s, the magnetic field strength decreases uniformly from 0.643 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy: mJ 2) You decide...

  • 3. Consider a circular loop of a wire with a radius of r = 20.0 cm...

    3. Consider a circular loop of a wire with a radius of r = 20.0 cm in a uniform magnetic field of B = 0.300 T pointing into the page, as shown below. The loop of wire has a resistance of 2.5 12 X X X X X X X X X XXXB x x x x x x x x x X X X X X X X X X X X X X X X X X X...

  • 3. Consider a circular loop of a wire with a radius of r = 20.0 cm...

    3. Consider a circular loop of a wire with a radius of r = 20.0 cm in a uniform magnetic field of B = 0.300 T pointing into the page, as shown below. The loop of wire has a resistance of 2.5 12. xx x x x x X X X X х X х X X X x x х х х X B х XX x x r XX X X х х x x X X X...

  • 3. Consider a circular loop of a wire with a radius of r = 20.0 cm...

    3. Consider a circular loop of a wire with a radius of r = 20.0 cm in a uniform magnetic field of B = 0.300 T pointing into the page, as shown below. The loop of wire has a resistance of 2.5 2 X X X X X X X X X X X X X x x x В x x x x x x x x x X XX Х X/X X X X x x x x...

  • The figure below shows a circular loop of wire of resistance R = 0.500Ω and radius r = 9.30 cm in the presence of a uniform magnetic field B out directed out of the page

    The figure below shows a circular loop of wire of resistance R = 0.500Ω and radius r = 9.30 cm in the presence of a uniform magnetic field B out directed out of the page. A clockwise current of I = 3.30 mA is induced in the loop.(a) Which of the following best describes the magnitude of Bout It is increasing with time. It is decreasing with time. It remains constant. (b) Find the rate at which the field is changing with time (in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT