Question

Please, I need the answer for this problem as soon as possible with all the steps thanksUSE EES Air Flows over over a flat metal plate at a velocity of 10 m/s. The 3 (а) plate is 0.7 m long and at a temperature of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer: Given that, Velocity vs lo mis length = 0.7m Ta = 315c - Ts = 28c → Rate of heat transfer - Rate of heat transfer ca> velocity Boundary layer thicknes: → Thermal boundary layer thicknen:- consider sta SCP,)593 where Pr - Prandti Number S : V

Add a comment
Know the answer?
Add Answer to:
Please, I need the answer for this problem as soon as possible with all the steps...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Heat Transfer Please be neat and organized for a thumbs up! Problem 3 Atmospheric air at...

    Heat Transfer Please be neat and organized for a thumbs up! Problem 3 Atmospheric air at T 300 K and a free stream velocity of u 10 m/s flows over a flat plate L = 2 m long that is maintained at a uniform temperature T-320 K. (a) Calculate the average heat transfer coefficient over the region where the boundary layer is laminar. What is the boundary layer thickness at this location? plate as well as the velocity boundary layer...

  • Clear solutions please fully worked out for a thumbs up, thanks! . Compare the external flows...

    Clear solutions please fully worked out for a thumbs up, thanks! . Compare the external flows of two different fluids over a flat plate held at a constant T,; air at a free-stream speed Ux-3 m and temperature Too-250 K to that of engine oil at a free-stream speed Un-3 ! ! and temperature T 400 K. For laminar flow over a flat plate, the velocity boundary layer thickness is given by δ- (In the absence of a known surface...

  • Problem 1: Air at 100 degrees Celsius, 1 atm and a free stream velocity of 5...

    Problem 1: Air at 100 degrees Celsius, 1 atm and a free stream velocity of 5 m/s flows over a 3 meter long, thin, flat plate of naphthalene, causing it to sublime... Please answer all parts Problem 1. (20 Points) Air at 100°C, 1 atm, and a free-stream velocity of 5 m/s flows over a 3- m-long, thin, flat plate of naphthalene, causing it to sublime. (a) Determine the length over which a laminar boundary layer persists. (b) For that...

  • Consider air flows with velocity of U?=U= 10 m/s over a semi-finite smooth flat plate with...

    Consider air flows with velocity of U?=U= 10 m/s over a semi-finite smooth flat plate with L=97 cm long. Calculate the followings by assuming ? = 1.568 x 10-5 m2/s and ?=1.177 kg/m3. Figure 1 : Boundary layer over a flat plate Consider air flows with velocity of U?=U=10 m/s over a semi-finite smooth flat plate with L=97 cm long. Calculate the followings by assuming ? = 1.568 x 10-5 m2/s and ?=1.177 kg/m3. b) Under some flow and boundary...

  • Problem #3 Air flows over a flat plate at 4 m/s. An approximation for the x...

    Problem #3 Air flows over a flat plate at 4 m/s. An approximation for the x component of velocity in the in- compressible laminar boundary layer is a sinusoidal variation from u-0 at the surface (y-0) to the freestream velocity, U, at the boundary-layer edge (y-5). The equation for the profile is u-Usin( %), where cVx and c is a constant. The boundary layer is 9 mm thick 1 m from the edge of the plate. (a) Predict the boundary-layer...

  • Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1...

    Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1 m/s. This plate has a length L= 1 m and it is heated over its entire length; the plate temperature is constant Tp=100°C. The following data are given. For air: dynamic viscosity: mu = 1.9*10–5 kg/(m.s); density: rho = 1.05 kg/m3; conductivity k = 0.03 W/(m K); Specific heat Cp = 1.007 kJ/(kg K); Prandtl number Pr = 0.7 For laminar flow over a...

  • Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50...

    Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50 m/s. The plate is 300 cm long and is maintained at 60C. The width of the plate is 2 m. The critical Rec = 5 x 105 The properties are Conductivity k = 0.0263 W/mK, kinematic viscosity nu = v = 15.89 x 10-6 m²/s, Prandtl number is Pr=0.707 Density rho = p = 1.128 kg/m3 1. Determine the critical length Xc 2. Determine...

  • Air at a temperature of 300 K flows over one side of a flat plate of...

    Air at a temperature of 300 K flows over one side of a flat plate of width 1 m at a velocity of 20 m/s. The plate has a constant surface temperature of 350 K. Assume Re(x,c)=5x10^5. a) What is the velocity boundary layer thickness at the end of the plate if L=0.25 m? What if L=1 m? b) Calculate the drag on the plate if L=0.25 m. What is the drag if L=1 m? c) Find the heat transfer...

  • Start by checking your Reynolds number (Re) at the end of the plate, where it will...

    Start by checking your Reynolds number (Re) at the end of the plate, where it will be at a maximum. This will determine if your boundary layer is simply laminar along the length of the plate or if it becomes turbulent (the "mixed BL" condition). Once you know the conditions of the flow, you can solve for the velocity BL thickness directly with an equation from the list of external flow correlations (posted). Your properties should be looked up at...

  • 3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on...

    3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on the surface. Assume the boundary (a). Wall shear stress, Fj)! layer bas a cubic velocity profile: (b). Boundary layer thickness, x)! (c). Shape factor (H-8t/0) Momentum integral equation on a flat plate is ax) Ud(u/U) Ху 1m The displacement thickncss and the momentum thickness are Freestream velocity is 1.0 m/s. The fluid viscosity and density are 1.55 x 10 m'ls and 1.23 kg/m, respectively...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT