Question

2. In the double slit diffraction experiment, the geometric relationship is d sine, = ma Where di is the two slits separation
0 0
Add a comment Improve this question Transcribed image text
Answer #1

a (d = 6.327x105ml dsindm = 3d (2nd order clark fringe al (632hm = 63270.3mm sin (0.015 rad) d4 = 31 Ý y = 32 y=(1.5) (633X10

Add a comment
Know the answer?
Add Answer to:
2. In the double slit diffraction experiment, the geometric relationship is d sine, = ma Where...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Young's double slit experiment has the screen placed 2.6 m from the double slits where...

    A Young's double slit experiment has the screen placed 2.6 m from the double slits where the spacing between the two slits is 0.03 mm. 16) The angle that locates the second-order bright fringe is 2.0degree. Find the wavelength of the light? 17) Find the distance y on the screen between the central bright fringe and the second-order bright fringe.

  • 3)A 680 nm laser illuminates a double-slit apparatus with a slit separation distance of 7.83 μm....

    3)A 680 nm laser illuminates a double-slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits? 4) A 600 nm laser illuminates a double-slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is...

  • Consider double slit experiment with two slits are separated by d=0,715 mm

    Consider double slit experiment with two slits are separated by d=0.715 mm and each slit width is 0.00321 mm. Screen is placed L=1.28 m away from the slits. a) Derive an algebraic equation to find linear distance of interference bright fringe on the screen from central bright (central maxima) fringe?  b) Consider interference pattern due to light of unknown wavelength and linear separation between 2 and 5" bright fringes is 3.05 mm. Find the wavelength of the light? c) Now consider double slit...

  • Two lasers are shining on a double slit, with slit separation d. Laser 1 has a...

    Two lasers are shining on a double slit, with slit separation d. Laser 1 has a wavelength of d/20, whereas laser 2 has a wavelength of d/15. The lasers produce separate interference patterns on a screen a distance 4.40 m away from the slits Coherent light with wavelength 600 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first-order bright fringe is a distance...

  • 1. A single slit forms a diffraction pattern, with the second minimum at an angle of...

    1. A single slit forms a diffraction pattern, with the second minimum at an angle of 40.0° from central maximum, when monochromatic light of wavelength 630 nm is used. What is the width of the single slit? 2. Consider a two-slit experiment in which the slit separation is 3.0 × 10-5 m and the interference pattern is observed on a screen that is 2.00 m away from the slits. The wavelength of light passing through the slits is 420 nm....

  • In a Young's double slit experiment a screen is placed 85.0 cm from two slits that...

    In a Young's double slit experiment a screen is placed 85.0 cm from two slits that have a spacing of 0.300 mm. The slits are illuminated with coherent light with a wavelength of 540 nm. (a) What is the distance between the first and third-order dark fringes? (b) What is the distance between the first-order bright fringe and the second order dark fringe?

  • D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the...

    PLEASE ANSWER 3 AND 5 SHOW ALL ALGEBRA STEPS D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the second order fringe at 0.15 angle. The interference pattern from the slits is projected onto a screen that is 3.00 m away (a) What is the wavelength of the light used (in nm)? (b) What is the separation distance (in mm) on the screen of the second bright fringe from the central bright fringe? (c)...

  • Please explain why the answer is 0.588 m. A double slit with a slit separation distance...

    Please explain why the answer is 0.588 m. A double slit with a slit separation distance of 2.00 times 10^-5 m is illuminated by light of wavelength 560 nm. If the distance from the slits to the screen is 6.00 m, what is the separation distance between the center of the central bright fringe and the fourth dark fringe above it? Feel free to use the small-angle approximation.

  • In a Young's double-slit experiment the wavelength of light used is 485 nm (in vacuum), and...

    In a Young's double-slit experiment the wavelength of light used is 485 nm (in vacuum), and the separation between the slits is 1.5 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.

  • In a Young's double-slit experiment the wavelength of light used is 491 nm (in vacuum), and...

    In a Young's double-slit experiment the wavelength of light used is 491 nm (in vacuum), and the separation between the slits is 1.1 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT