Question

A mass at the end of a spring is undergoing simple harmonic oscillations with amplitude A....

A mass at the end of a spring is undergoing simple harmonic oscillations with amplitude A. a) What fraction of the total mechanical energy is kinetic if the displacement is ⅓ the amplitude? a) In terms of A, find the value of displacement x at which the potential energy equals 1 /16 of the total mechanical energy.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) KE = Etotal - PE = kA2/2 - k(A/3)2/2 = (8/9) * Etotal

=> KE / Etotal = 8/9

b) PE = Etotal / 16

=> kx2/2 = kA2/32

=> x = A/4

Add a comment
Know the answer?
Add Answer to:
A mass at the end of a spring is undergoing simple harmonic oscillations with amplitude A....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m at the end of a spring of spring constant k is undergoing simple harmonic oscillations with amplitude A.

    A mass m at the end of a spring of spring constant k is undergoing simple harmonic oscillations with amplitude A. Part (a) At what positive value of displacement x in terms of A is the potential energy 1/9 of the total mechanical energy? Part (b) What fraction of the total mechanical energy is kinetic if the displacement is 1/2 the amplitude? Part (c) By what factor does the maximum kinetic energy change if the amplitude is increased by a factor of 3?

  • A mass m on a spring of stiffness k undergoes horizontal simple harmonic motion with amplitude...

    A mass m on a spring of stiffness k undergoes horizontal simple harmonic motion with amplitude A, centered around x = 0. a) What is the total "mechanical" energy (kinetic plus potential) of the mass-spring system? b) What is the value of x when the mass-spring system has twice as much kinetic energy as potential energy? Your answers should be in terms of the quantities m, k, and A--or some subset thereof.

  • 1) A 12.3 kg particle is undergoing simple harmonic motion with an amplitude of 1.86 mm....

    1) A 12.3 kg particle is undergoing simple harmonic motion with an amplitude of 1.86 mm. The maximum acceleration experienced by the particle is 7.93 km/s2. (a) Find the period of the motion. (b) What is the maximum speed of the particle? (c) Calculate the total mechanical energy of this simple harmonic oscillator. 2) The orbit of the Moon around the Earth as projected along a diameter can be viewed as simple harmonic motion. Calculate the effective force constant k...

  • 1. A mass is attached to the end of a spring and set into simple harmonic...

    1. A mass is attached to the end of a spring and set into simple harmonic motion with an amplitude A on a horizontal frictionless surface. Determine the following in terms of only the variable A. (a) Determine the magnitude of the position (in terms of A) of the oscillating mass when its speed is 40% of its maximum value. (b) Determine the magnitude of the position (in terms of A) of the oscillating mass when the elastic potential energy...

  • A mass is attached to the end of a spring and set into simple harmonic motion...

    A mass is attached to the end of a spring and set into simple harmonic motion with an amplitude A on a horizontal frictionless surface. Determine the following in terms of only the variable A. (a) Magnitude of the position in terms of A) of the oscillating mass when its speed is 20% of its maximum value. A (b) Magnitude of the position (in terms of A) of the oscillating mass when the elastic potential energy of the spring is...

  • A mass is attached to the end of a spring and set into simple harmonic motion...

    A mass is attached to the end of a spring and set into simple harmonic motion with an amplitude A on a horizontal frictionless surface. Determine the following in terms of only the variable A. (a) Magnitude of the position (in terms of A) of the oscillating mass when its speed is 40% of its maximum value. A (b) Magnitude of the position (in terms of A) of the oscillating mass when the elastic potential energy of the spring is...

  • A block-spring system undergoes simple harmonic motion with an amplitude A. 3.1 If the mass is...

    A block-spring system undergoes simple harmonic motion with an amplitude A. 3.1 If the mass is doubled but the amplitude remains unchanged, how will this affect the total energy of the system? 3.2 Can the displacement and the acceleration of the mass be In the same direction? Explain.

  • A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of...

    A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of a horizontal spring with force constant 305 N/m. When the object is a distance 1.15 times 10^-2 m from its equilibrium position, it is observed to have a speed of 0.305 m/s. What is the total energy of the object at any point of its motion? What is the amplitude of the motion?

  • Question 7 1 pts A block attached to a spring is undergoing simple harmonic motion. At...

    Question 7 1 pts A block attached to a spring is undergoing simple harmonic motion. At one point in its motion, its kinetic energy is 5 J and its potential energy is 3 J. When the block reaches the point of maximum displacement from equilibrium, the kinetic and potential energies are: K-0 and U--8 Previous Submit Quiz No new data to save. Last checked at 10:39am

  • A simple harmonic oscillator is composed of a mass hanging from a spring. The mass of...

    A simple harmonic oscillator is composed of a mass hanging from a spring. The mass of the hanging object is 400 g and the spring constant is 0.8 ?/? . At the time ? = 0 ?, the mass is 2cm above its equilibrium position. The amplitude of the oscillation is 5 cm. a) What is the initial phase? b) Find one of the times where the mass is located at 3cm above equilibrium. c) Find the kinetic and potential...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT