Question
Please answer all parts



A spark-ignition engine is operaing on the ideal Cto cydle. The compression ratio of the ransferred to air. Answer questions
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Fae 740 K 0.4 2-386-ㅡㅡㅡㅡㅡㅡㅡ 74071 T 73748T, 36+273 32 D.047 3. 3 3 176812 : 그 4%tuLt İtf.newen.. _ w? k RT 01287 x(275+36 3 す. 1768 11768:14と 2106kPa 3 ィー! ,287 x C 1768, 12-7408)Page No. (Date 733. 27-3S-37 -об 427. 24o 57.7 ( C- T27. o meanz 0 2.23 MPafor variable thermal conductivity ....we need a equation

Add a comment
Know the answer?
Add Answer to:
Please answer all parts A spark-ignition engine is operaing on the ideal Cto cydle. The compression...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temp...

    4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temperature is 1116°C. Accounting for variable specific heats, determine: (a) the heat addition per cycle in kJ. Ans: 3.368 kJ (b) the net work per cycle in kJ. Ans: 1.907 kJ (c) the mean effective pressure in kPa. Ans: 460.6 kPa (d) the...

  • A four-stroke 2.0 Litre compression ignition engine operates on a Diesel cycle with a compression ratio...

    A four-stroke 2.0 Litre compression ignition engine operates on a Diesel cycle with a compression ratio of 20 and a cut-off ratio of 1.8. Air is at 30°C and 100 kPa at the beginning of the compression process. It may be assumed that for the air, the specific heat, Cp and gas constant, R are 1.005 and 0.287 kJ/kg.K, respectively. Calculate: the temperature (K) of the air at the end of the following processes: (i) (a) compression (ii) combustion, (ii...

  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression...

    An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression process, air is at 95 kPa and 27-degree C, and 750 kJ/kg of heat is to air during the constant-volume heat-addition process. Considering the variation of specific heats with temperature (Table A-17), determine (a) the pressure and temperature at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the...

  • An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression...

    An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression process, air is at 100 kPa and 17°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle .

  • Α 4-stroke spark-ignition engine has a compression ratio of 10 and operates on the ideal constant...

    Α 4-stroke spark-ignition engine has a compression ratio of 10 and operates on the ideal constant volume cycle with intake pressure of 50 kPa (throttled) and intake temperature of 300 K. The exhaust pressure is 100 kPa. The heat input from combustion is 2500 kJ/kg and γ = 1.3 for the working fluid. a. Draw the p-V diagram of the full cycle and indicate all the processes. b. Calculate the residual gas fraction and the temperature decrease during the exhaust...

  • Required information A four-cylinder, four-stroke, 1.8-L modern high-speed compression- ignition engine operates on the ideal dual...

    Required information A four-cylinder, four-stroke, 1.8-L modern high-speed compression- ignition engine operates on the ideal dual cycle with a compression ratio of 16. The air is at 95 kPa and 70°C at the beginning of the compression process, and the engine speed is 2000 rpm. Equal amounts of fuel are burned at constant volume and at constant pressure. The maximum allowable pressure in the cycle is 7.5 MPa due to material strength limitations. Use constant specific heats at 1000 K....

  • 4. An Ideal diesel engine has a compression ratio of 20 and uses air as the...

    4. An Ideal diesel engine has a compression ratio of 20 and uses air as the working fluid. The state of air at the beginning of the compression process is 95kPa and 20°C. If the maximum temperature in the cycle is not to exceed 2200K, determine a) the thermal efficiency and b) the mean effective pressure. Assume constant specific heats for air at room temperature. 5. An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio...

  • 15. An air-standard, ideal gas cycle with limited-pressure combustion is used to evaluate an idea...

    15. An air-standard, ideal gas cycle with limited-pressure combustion is used to evaluate an ideal compression ignition engine. The compression ratio is 12. The maximum temperature in the cycle is 2040 °F. The minimum temperature and pressure in the cycle is 40 OF and 20 psia, respectively. The coefficient β=1.2 (β is the ratio of the volume after to the volume before the constant pressure heat input process). Calculate the heat added during combustion per lbm of air, and the...

  • Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of...

    Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27 and 720 kJ/kg of heat is transferred to air during the constant volume heat addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R=0.287 kJ/kg.K. Determine the network output (You must provide an answer before moving on to the next part.) The net work output...

  • Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the...

    Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 750 kJ/kg of heat is transferred to air during the constant- volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat- addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT