Question

2. A billiard ball, of mass mA 0.400 kg moving with a speed of vA 1.80 m/s strikes a second ball, initially at rest, of mass

0 0
Add a comment Improve this question Transcribed image text
Answer #1

7 A elate Colision 才here es no extemal tete en out m / linear momentum must be Consesee 2 X So geves-う 0.72-0.22 V3 2 Y % Sin (O) 10by icke ② fogd O.니너 O. 닙니 lan () う Tan (8) 0.6Ago 655388 う 32.9862 fut this Value ① to get:- D너니 0 Sn (32-93R6 / 1 m

Add a comment
Know the answer?
Add Answer to:
2. A billiard ball, of mass mA 0.400 kg moving with a speed of vA 1.80...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s...

    Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. Part C Solve these equations...

  • Billiard ball A of mass mA = 0.119 kg moving with speed vA = 2.80 m/s...

    Billiard ball A of mass mA = 0.119 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.141 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. Solve these equations for the...

  • Billiard ball A of mass mA = 0.115 kg moving with speed vA = 2.80 m/s...

    Billiard ball A of mass mA = 0.115 kg moving with speed vA = 2.80 m/s strikes ball B , initially at rest, of mass mB = 0.144 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s , and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. Part A Taking...

  • Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.80 m/s...

    Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg . As a result of the collision, ball A is deflected off at an angle of 27.5 ∘ with a speed vA1 = 2.25 m/s . a.) Taking the x axis to be the original direction of motion of ball A, write down the equation expressing the conservation of momentum for the...

  • A billiard ball of mass = 300.0 g moving with an initial speed of 1.80 m/s...

    A billiard ball of mass = 300.0 g moving with an initial speed of 1.80 m/s strikes a second ball of mass mg 400.0 g initially at rest, As a result of the collision, the first ball is deflected off at an angle of 25.0 0 with a speed of 1.00 m/s. Do not assume this is a perfect collision, (a) Taking the x-axis to be the original direction of the motion of ball A, write down the equations of...

  • Billiard ball A of mass mA= 0.105 kg moving with speed vA= 2.65 m/s strikes ball...

    Billiard ball A of mass mA= 0.105 kg moving with speed vA= 2.65 m/s strikes ball B, initially at rest, of mass mB= 0.150 kg . As a result of the collision, ball A is deflected off at an angle of 29.0 with a speed vA1= 2.15 m/s A) Taking the x axis to be the original direction of motion of ball A, write down the equation expressing the conservation of momentum for the components in the xx direction. Assume...

  • Billiard ball A of mass mA = 0.115 kg moving with speed vA = 2.60 m/s...

    Billiard ball A of mass mA = 0.115 kg moving with speed vA = 2.60 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg. As a result of the collision, ball A is deflected off at an angle of 32.0 ∘ with a speed vA1 = 2.35 m/s . a) Solve for the final speed, vB, of ball B. Do not assume the collision is elastic. b) Solve for the angle, θB, of ball B. Do...

  • Problem 9.54 12 of 16 > Constants | Periodic Table Billiard ball A of mass mA...

    Problem 9.54 12 of 16 > Constants | Periodic Table Billiard ball A of mass mA 0.115 kg moving with speed vA 3.00 m/s strikes ball B, initially at rest, of mass m B 0.150 kg. As a result of the collision, ball A is deflected off at an angle of 28.0 ° with a speed A1 2.40 m/s Part A Taking the z axis to be the original direction of motion of ball A, write down the equation expressing...

  • Billiard ball A of mass m_A = 0.120 kg moving with a speed v_A = 2.80...

    Billiard ball A of mass m_A = 0.120 kg moving with a speed v_A = 2.80 m/s strikes ball B, initially attest, of mass m_B = 0.140 kg. As a result of the collision, ball A is deflected off at an angle of 30 degree with a speed of v_A = 2.10 m/s. Solve for the velocity of ball B after the collision. Do not assume the collision is elastic

  • A billiard ball moving at a speed of 7.95 m/s strikes an identical stationary ball a...

    A billiard ball moving at a speed of 7.95 m/s strikes an identical stationary ball a glancing blow. After the collision, one ball is found to be moving at a speed of 1.80 m/s in a direction making a 59.5 ° with the original line of motion. What is the speed of the other ball? At what angle is it moving? Give your answer in degrees. (Hint: use conservation of linear momentum)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT