Question

#K5-11 A rough horizontal track, a pulley and two blocks connected by a string are located in a laboratory near the surface of a planet. Block I has mass m, and block 2 has mass m,. The gravitational acceleration of the planet has magnitude g and is directed straight down. The coefficient of kinetic friction between block I and the track isA. The string connecting the blocks has negligible mass and constant length. The pulley is also very light. Block 2 is sufficiently heavy that block 1 slides horizontally to the right, against the friction. Block 2 moves straight down. nt nt 2 (a) Draw a free-body force diagram for each of the blocks, as has been done in lecture. (b) Construct a force-component table for each block, as has been done in lecture. In this step, do not use Newton 2 or explicit formulas for known forces. (c) What are the expressions for the forces that have explicit formulas? d) State the relationship between the magnitudes of the tensions exerted by the ends of the string on the blocks (e) Argue that al,-0 and aa = 0. (The problem states , so and use a little calculus.) ( State the relationship between the magnitudes of the accelerations of the blocks. Also state the relationship between a1x and@y· (g) Calculate formulas fora,襾,,T, and T. These involvem-m-A4 and g. Partial Ans. m + m
0 0
Add a comment Improve this question Transcribed image text
Answer #1

emi m.32)As-the String es mora constam lengyh, throughous the St the t+ension s same S As the string has consrant ro 1-1a29|-a len,

Add a comment
Know the answer?
Add Answer to:
#K5-11 A rough horizontal track, a pulley and two blocks connected by a string are located...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • Two blocks are connected by a string that passes over a frictionless pulley, as shown in...

    Two blocks are connected by a string that passes over a frictionless pulley, as shown in the figure. The pulley has a mass of mp = 2.00 kg, and can be treated as a uniform solid disk that rotates about its center. Block A, with a mass = 3.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces, torques,...

  • Two blocks are connected by a string that is wrapped around a pulley wheel. The light...

    Two blocks are connected by a string that is wrapped around a pulley wheel. The light block with mass 5.3 kg sits a flat table; the heavier block, which is twice as massive, is suspended below the pulley. There is friction acting between the lighter block and the table with a coefficient of friction 0.79. The system is released from rest. What is the speed of the blocks after the bottom block has fallen 4.2 meters in units of meters/second?...

  • Two blocks are connected by a string that goes over an ideal pulley as shown in...

    Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block m1 has a mass of 2.02 kg and can slide over a rough plane inclined 27° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.389. Block B has a mass of 4.47 kg. What is the acceleration of the blocks?

  • Two blocks are connected by a string that goes over an ideal pulley as shown in the figure

    Problem# 9: Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block A has a mass of 3.00 kg and can slide over a rough plane inclined 30.0° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.400. Block B has a mass of 2.77 kg. (a)Draw the free body diagram (b)What is the reaction of the surface on block A? (c)What is the friction force? (d)What is the acceleration...

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.80 m/s2, and the tension in the segment of string attached to this block is T,. The hanging block has a mass of m, = 23.5 kg, and the tension in the string attached to it is...

  • In the figure, two 6.20 kg blocks are connected by a massless string over a pulley...

    In the figure, two 6.20 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia of 7.40 Times 10^-1 kg m^2. The string does not slip on the pulley; and there is no friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest the pulley turns through 1.30 rad in 91.0 ms and the acceleration of the blocks is constant. What are...

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

  • In the figure, two 5.60 kg blocks are connected by a massless string over a pulley...

    In the figure, two 5.60 kg blocks are connected by a massless string over a pulley of radius 2.20 cm and rotational inertia 7.40 times 10^-4 kg-m^2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 1.00 rad in 179 ms and the acceleration of the blocks is constant. What...

  • Two blocks are connected by massless string that is wrapped around a pulley. Block 1 has...

    Two blocks are connected by massless string that is wrapped around a pulley. Block 1 has a mass m1=5.30m1=5.30 kg, block 2 has a mass m2=2.50m2=2.50 kg, while the pulley has a mass of 1.60 kg and a radius of 14.1 cm. The pulley is frictionless, and the surface mass 1 is on is also frictionless. If the blocks are released from rest, how far will block 2 fall in 2.60 s?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT