Question

65 MPa Problem 3 (35 Points): For the given stress state as shown in the figure, find the principal stresses and principal an
0 0
Add a comment Improve this question Transcribed image text
Answer #1

From the diagram 65 MPa inti ta -120 MPa 40 og 65 MPa TY 120 MPa lyx z 40 MPa . Grey Stress tensor -120 40 MPa 40 65 For Prinp = -0.4324 2x 40 Tan aon 2 Cay Ta- og -120 - 65 D 20n - 23.4 l. 7 Мө Tan 20s Ta-Ty -120 – 65 o 2.3125 hox ze 2x 40 C 205 に 6

Add a comment
Know the answer?
Add Answer to:
65 MPa Problem 3 (35 Points): For the given stress state as shown in the figure,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 6 (15 points) The state of plane stress at a point is shown on the...

    Problem 6 (15 points) The state of plane stress at a point is shown on the element in Figure 6. a. Using Mohr's circle, determine the principal stresses and the maximum in-plane shear stress and average normal stress. Specify the orientation of the element in each case. b. Represent the state of stress on an element oriented 30° counterclockwise from the position shown in Figure 6. 20 MPa 100 MPa 40 MPa Figure 6 (plot Mohr's circle on the next...

  • 3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa;...

    3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa; and unknown shear stress, The maximum principal stress was determined to be 104.34 MPa. Using Mohr's cirdle, determine a. the magnitude of the shear stress, b. the principal plane and the minimum principal stress. Then, sketch the element showing all stresses in its proper orientation, c. the maximum shear stress, associated normal stress and the orientation of the element. Then, sketch the element showing...

  • QUESTION 2 [10 marks! For the state of stress shown it is known that the normal...

    QUESTION 2 [10 marks! For the state of stress shown it is known that the normal and shearing stresses are directed as shown in Figure 2 and that 0,- 63 MPa, 0, -42 MPa and try = 28 MPa. Based on the information given, compute; 42 MPa 28 MPa 63 MPa Figure 2 (a) (b) the orientation of the principal planes. the principal stresses. 15 marks) (5 marks) QUESTION 35 marks The beam shown in Figure 3 is roller supported...

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, o, and O2 and their corresponding principal angles, 0p1,0p2 and show all of these on your Mohr's circle construction and a properly oriented stress element c. Calculate the maximum shear stresses, ITmax and their corresponding angles of maximum...

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and Txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, 01 and 02 and their corresponding principal angles, 021,092 and show all of these on your Mohr's circle construction and a properly oriented stress element. c. Calculate the maximum shear stresses, ETmax and their corresponding angles of maximum...

  • Problem 2: The state of stress at a point is given by 80 20 40 [a] 20 60 10|MPa 40 10 20 (a) Dete...

    Please include all parts! Problem 2: The state of stress at a point is given by 80 20 40 [a] 20 60 10|MPa 40 10 20 (a) Determine the strains using Young's modulus of 100 GPa and Poisson's ratio of 0.25 (b) Compute the strain energy density using these stresses and strains (c) Calculate the principal stresses and principal stress directions (can use the MATLAB command) (d) Write the strains calculated in (a) above in the form of strain matrixel...

  • Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the p...

    please help me solve this whole mechanical design problem thanks Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the principal stresses, s, (c) the maximum in plane shearing stress, Tmar and (d) its orientation, p. (e) the normal stress at the plane of maximum shear stress, (1) sketch of the rotated plane element for the principal stresses and the rotated plane element for maximum shear stress similar to figure 1, below...

  • a) The state of stress at a point is shown on the element in Figure Q4(a)...

    a) The state of stress at a point is shown on the element in Figure Q4(a) Deternine i) The principal stresses (in-plane) and the corresponding principal planes; 1) The maximum in-plane shear stress and the orientation of the corresponding plane as well as the normal stress on that plane. 60 MPa 30 MPa 45 MPa Figure Q4(a)

  • Question 3 68 MPa 56 MPa 12 MPa Figure 3. Stress components acting on an element....

    Question 3 68 MPa 56 MPa 12 MPa Figure 3. Stress components acting on an element. Figure 3 shows an element experiencing several stress components. Determine the following: 1. The stress components oxx, y, and Tyyacting on the element oriented at a counter clockwise angle 0 = 30° from the horizontal x axis 2. The principal stresses, the maximum shear stress and their associated angles Show all results on sketches of properly oriented elements. Note: Solutions MUST be obtained using...

  • Consider the given state of stress. Take X = 10 MPa and Y = 45 MPa....

    Consider the given state of stress. Take X = 10 MPa and Y = 45 MPa. Determine the principal planes using Mohr's circle. a) The principal planes are at −  ° and  °. Determine the principal stresses using Mohr's circle. b)The minimum principal stress is −  MPa, and the maximum principal stress is  MPa. Determine the orientation of the planes of maximum in-plane shearing stress using Mohr's circle. c) The orientation of the plane of maximum in-plane shearing stress in the first quadrant is  °....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT