Question

The figure below pertains to questions 10.) and 11.). Itillustrates a 15cm long conducting bar...

The figure below pertains to questions 10.) and 11

The figure below pertains to questions 10.) and 11.). 

It illustrates a 15cm long conducting bar resting on zero-resistance wires. You begin exerting a force on the bar and thereby make it move at constant speed. While the bar is moving, a counterclockwise induced current is present in the conducting loop created by the bar and wires.

10.) Which of the following statements is false?

a.) You are moving the conducting bar to the right.

b.) The induced magnetic field through the center of the loop is directed into the page.

c.) The conducting bar experiences a magnetic force while you are moving it.

d.) The amount of emf induced depends on how fast the conducting bar is moving. e.) As you do work to move the bar with your force, energy is being dissipated by the resistor.

11.) If you are moving the bar 10m/s, what force are you exerting on the bar to keep it moving at this constant speed?

3 0
Add a comment Improve this question Transcribed image text
Answer #1

given

that the induced current is in counter clock wise direction as rod moving in the field is due to the rod is moving to the right .

10.
so among the options given , option B, is False


11. Bar is moving with constant speed 10 m/s , force acting on the bar is F = BIL

   the induced emg e = B*v*L = 0.1*10*0.15 = 0.15 V

now the induced current i = e/R = 0.15/1 = 0.15 A

   force on bar is F = BIL = 0.1*0.15*0.15 N = 0.00225 N = 2.25 mN

Add a comment
Know the answer?
Add Answer to:
The figure below pertains to questions 10.) and 11.). Itillustrates a 15cm long conducting bar...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 2. A conducting bar moves rightward with a constant velocity v on two conducting parallel...

    Question 2. A conducting bar moves rightward with a constant velocity v on two conducting parallel rails. The two conducting parallel rails are separated by a distance d. The two conducting parallel rails are connected with a resistor R. The setup is located in a uniform magmatic field B out of page. Bu Please show all steps and explain every step in your own words. 1) If there is an induced current in the loop, which direction is it and...

  • A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length...

    A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length of the bar is 1.60m and a uniform magnetic field of 2.20T is applied perpendicular to the paper pointing outward as shown a) What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? b) At what rate is energy dissipated in the 4.00 ohm resistor? A conducting bar moves along frictionless conducting rails connected...

  • 1. A conducting bar of resistance R = 0.100 S2 and mass m = 0.15 kg...

    1. A conducting bar of resistance R = 0.100 S2 and mass m = 0.15 kg slides without friction along two x x x x x 1 parallel conducting rails of negligible resistance Ebat X X X X X 1 positioned a distance l = 0.080 m apart, as shown, in a region with a uniform magnetic field of magnitude B = 1.50 T oriented perpendicularly to the plane of the rails. A battery of emf Ebat = 24.0 V...

  • 1. The conducting loop in the figure is moving into the region between the magnetic poles...

    1. The conducting loop in the figure is moving into the region between the magnetic poles shown.Is the induced current (viewed from above) clockwise or counterclockwise?A. clockwiseB. counterclockwise 2. Is there an attractive magnetic force that tends to pull the loop in, like a magnet pulls on a paper clip? Or do you need to push the loop in against a repulsive force?   A. You need to push the loop in against a repulsive force. B. There is an...

  • Use 3 Sig Figs in this Problem Part A - What is the EMF induced across...

    Use 3 Sig Figs in this Problem Part A - What is the EMF induced across the ends of the bar? Part B What is the current flowing in the loop? Part C What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? Part D At what rate is energy dissipated in the 4.00 Ω resistor? A conducting bar (negligible resistance) moves along frictionless conducting rails (negligible resistance) connected to...

  • The figure below shows a 50 cm long bar attached to ideal frictionless parallel wires. The...

    The figure below shows a 50 cm long bar attached to ideal frictionless parallel wires. The bar is free to slide along the wires but its orientation is forced by the attachments. The bar is pulled by an external force at a constant velocity along the wires in the presence of a B - 3.10 T magnetic field which points into the screen. The parallel wires are connected to a R-28.01 resistor and the bar makes an angle of @=...

  • The figure below shows a 50 cm long bar attached to ideal frictionless parallel wires. The...

    The figure below shows a 50 cm long bar attached to ideal frictionless parallel wires. The bar is free to slide along the wires but its orientation is fixed by the attachments. The bar is pulled by an external force at a constant velocity along the wires in the presence of a B = 1.70 T magnetic field which points into the screen. The parallel wires are connected to a R = 22.0 12 resistor and the bar makes an...

  • The figure below shows a 50 cm long bar attached to ideal frictionless parallel wires. The...

    The figure below shows a 50 cm long bar attached to ideal frictionless parallel wires. The bar is free to slide along the wires but its orientation is fixed by the attachments. The bar is pulled by an external force at a constant velocity along the wires in the presence of a B = 2.60 T magnetic field which points into the screen. The parallel wires are connected to a R = 24.0 12 resistor and the bar makes an...

  • 6) A vertical pair of parallel conducting rails are separated by a width of 22 cm....

    6) A vertical pair of parallel conducting rails are separated by a width of 22 cm. They are connected at the bottom by a wire that has resistance 50 m. A uniform magnetic field of strength 2800 mT points perpendicularly to the pair of rails. A 640 gram sliding conducting bar connecting the rails is released from the top and allowed to drop under the influence of gravity. Its acceleration rapidly drops to zero, and the bar continues to fall...

  • 6) A vertical pair of parallel conducting rails are separated by a width of 30 cm....

    6) A vertical pair of parallel conducting rails are separated by a width of 30 cm. They are connected at the bottom by a wire that has resistance 50 m2. A uniform magnetic field of strength 2400 ml points perpendicularly to the pair of rails. A 720 gram sliding conducting bar connecting the rails is released from the top and allowed to drop under the influence of gravity. Its acceleration rapidly drops to zero, and the bar continues to fall...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT