Question

Question 2. A conducting bar moves rightward with a constant velocity v on two conducting parallel rails. The two conducting

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1. Yes, there will be an induced current in the loop. SInce its a metallic bar that moves towards right in a Magnetic field, it will have charges inside it, free to move. Since cahrges moving through a magnetic field feel a force, Lorentz force given by F= q.v.b.Sin(90). So the electrons which are free to move, will be pushed by this force, whose direction can be found from RIght Hand Thumb Rule. Applying RIght Hand Rule here, with Magnetic Field coming out of page, and velocity in Right direction, we get that the electrons feel a downwards foce in the bar.

Eventually, enough of them will be at the bottom of the bar, that there will also be a net positive charge at the top, thus inducing an electric field within the bar, which balances the Magnetic field, ultimately reaching an Equilibirim.

Note that we will have to continously keep the bar moving to keep the emg going.

But due to the separation of charges, there is an induced current in the loop, opposite to the direction of flow of electrons, ie Counter Clockwise.

2. At the equilibirum, the Magnetic force is balanced out be electric force, giving FB=FE

Thus q.v.B = q.E

Thus E=v.B

Now potential difference is = E.d where d is distance between charges equal to length of rod.

Thus induced emf = v.B.d

3. The current induced in the bar can be found from Ohm's law, where V=IR

Thus i= V/R= v.B.d/R

4. Force on the bar is given by F=i.d.B Sin 90 Given by Forentz Force Law.

Thus F= v.B.d.d.B/R = vB2d2/R

Add a comment
Know the answer?
Add Answer to:
Question 2. A conducting bar moves rightward with a constant velocity v on two conducting parallel...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...

    A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L = 0.20 m. The rails are connected on one end by a R = 10.12 resistor. A conducting bar of mass 1.2 kg can slide on the rails without friction. When the conducting bar is at x = 0, the enclosed area of the loop is 0.03 m2. There is zero resistance in the conducting bar or rails. A uniform...

  • A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...

    A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L=0.30 m. A light conducting bar can slide on the rails without friction. When the conducting bar is at x = 0, the enclosed area of the loop is 0.03 m². There is zero resistance in the conducting bar or rails, the rails are connected on one end by a R=1.5 resistor. A uniform magnetic field of B -0.25 T is...

  • In a region with a constant magnetic field as shown, there are two conducting frictionless horizontal...

    In a region with a constant magnetic field as shown, there are two conducting frictionless horizontal rails, a resistor and some conducting wire along the left side and a conducting bar on the right side that is free to slide left or right. The bar is initially at rest but at time zero a force is applied to the bar pulling it to the right so that the distance s increases with time. a. Magnetic flux through the loop increases...

  • can someone explain these to me? answers are circled (5 pts) 19. Two parallel conducting rails...

    can someone explain these to me? answers are circled (5 pts) 19. Two parallel conducting rails are connected at one end by a resistor. A bar slides on the rails with speed v, in the direction away from the resistor. The magnetic field that is directed into the page. What is the direction of the current induced in the circuit that consists of the bar, rails and resistor? X X X (a) clockwise (b) counterclockwise (5 pts) 20. A horizontal...

  • 1. A conducting bar of resistance R = 0.100 S2 and mass m = 0.15 kg...

    1. A conducting bar of resistance R = 0.100 S2 and mass m = 0.15 kg slides without friction along two x x x x x 1 parallel conducting rails of negligible resistance Ebat X X X X X 1 positioned a distance l = 0.080 m apart, as shown, in a region with a uniform magnetic field of magnitude B = 1.50 T oriented perpendicularly to the plane of the rails. A battery of emf Ebat = 24.0 V...

  • 6) A vertical pair of parallel conducting rails are separated by a width of 22 cm....

    6) A vertical pair of parallel conducting rails are separated by a width of 22 cm. They are connected at the bottom by a wire that has resistance 50 m. A uniform magnetic field of strength 2800 mT points perpendicularly to the pair of rails. A 640 gram sliding conducting bar connecting the rails is released from the top and allowed to drop under the influence of gravity. Its acceleration rapidly drops to zero, and the bar continues to fall...

  • 6) A vertical pair of parallel conducting rails are separated by a width of 30 cm....

    6) A vertical pair of parallel conducting rails are separated by a width of 30 cm. They are connected at the bottom by a wire that has resistance 50 m2. A uniform magnetic field of strength 2400 ml points perpendicularly to the pair of rails. A 720 gram sliding conducting bar connecting the rails is released from the top and allowed to drop under the influence of gravity. Its acceleration rapidly drops to zero, and the bar continues to fall...

  • w 2. The conducting bar illustrated in the figure moves on two frictionless, parallel rails in...

    w 2. The conducting bar illustrated in the figure moves on two frictionless, parallel rails in the presence of a uniform magnetic field directed into the page. The bar has mass m and its length is l. The bar is given an initial velocity Vi to the right and is released at t=0. Find the speed of the bar as a function of time after it is released.

  • RS ws Inside 1. You have two parallel metal rails that are connected by a 32...

    RS ws Inside 1. You have two parallel metal rails that are connected by a 32 resistor as shown in the figure on the right. You slide a metal bar onto the rails so that the two rails, the bar, and the resistor make a complete circuit. The bar has a length of 0.16 m. You place this apparatus inside a uniform magnetic field with a strength of 0.57 T that points into the page. You pull the bar to...

  • A conducting bar of length ! moves to the right on two frictionless rails as shown...

    A conducting bar of length ! moves to the right on two frictionless rails as shown in the figure below. A uniform magnetic field directed into the page has a magnitude of 0.290 T. Assume R = 9.10 and l = 0.330 m. X X X X X X X X * * *A* X * * * * * * * X X * * x * * * * * * * X X * * x *...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT