Question

6. 2 points My Notes Ask Your Teacher A vertical spring-mass system undergoes damped oscillations due to air resistance. The spring constant is 2.15 × 104 N/m and the mass at the end of the spring is 14.6 kg. (a) If the damping coefficient is b 4.50 N s/m, what is the frequency of the oscillator? 6.1074 Hz (b) Determine the fractional decrease in the amplitude of the oscillation after 5 cycles. Additional Materials eBook Viewing Saved Work Revert to Last Response I am not sure if I got A right but I need help with b

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2. 2 14.6 4x y Ya an sb -ax4.5

Add a comment
Know the answer?
Add Answer to:
I am not sure if I got A right but I need help with b 6....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 8. + 0.5/1 points Previous Answers OSUniPhys1 15.5.WA.046. My Note A vertical spring-mass system undergoes damped oscil...

    8. + 0.5/1 points Previous Answers OSUniPhys1 15.5.WA.046. My Note A vertical spring-mass system undergoes damped oscillations due to air resistance. The spring constant is 2.50 x 10 N/m and the mass at the end of the spring is 15.0 kg. (a) If the damping coefficient is b = 4.50 N. s/m, what is the frequency of the oscillator? 6.498 ✓ Hz (b) Determine the fractional decrease in the amplitude of the oscillation after 7 cycles. 316 x What is...

  • A compact object with a mass of 4.80 kg oscillates at the end of a vertical...

    A compact object with a mass of 4.80 kg oscillates at the end of a vertical spring with a spring constant of 1.60 ✕ 104 N/m. The motion is damped by air resistance, and the damping coefficient is b = 3.00 N · s/m. (a) What is the frequency (in Hz) of the damped oscillation?____________ (b) By what percentage does the amplitude of the oscillation decrease in each cycle? _____________ % (c) Over what time interval (in s) does the...

  • A metal block with a mass of 8.80 kg oscillates at the end of a vertical...

    A metal block with a mass of 8.80 kg oscillates at the end of a vertical spring with a spring constant of 2.20 x 104 N/m. The motion is damped by air resistance, and the damping coefficient is b = 3.00 N. s/m. (a) What is the frequency (in Hz) of the damped oscillation? THz (b) By what percentage does the amplitude of the oscillation decrease in each cycle? % c) Over what time interval (in s) does the energy...

  • 58 For the damped oscillator system shown in Fig. 15-16, with m 250 g, k 85...

    58 For the damped oscillator system shown in Fig. 15-16, with m 250 g, k 85 N/m, and b - 70 g/s, what is the ratio of the oscil- lation amplitude at the end of 20 cycles to the initial oscillation amplitude? Rigid support Springiness, k Mass m Vane Damping, b Figure 15-16 An idealized damped simple harmonic oscillator. A vane immersed in a liquid exerts a damping force on the block as the block oscillates parallel to the x...

  • A damped harmonic oscillator consists of a block of mass 5kg and a spring with spring...

    A damped harmonic oscillator consists of a block of mass 5kg and a spring with spring constant k = 10 N/m. Initially, the system oscillates with an amplitude of 63 cm. Because of the damping, the amplitude decreases by 56% of its initial value at the end of four oscillations. What is the value of the damping constant, b? What percentage of initial energy has been lost during these four oscillations?

  • There's a lot going on here and I am overwhelmed. I have no idea how to...

    There's a lot going on here and I am overwhelmed. I have no idea how to start this. -w'r, (25%) Problem 4: Any system for which the acceleration is linearly proportional to the position with a negative proportionality constant), or a = undergoes simple harmonic motion, a form of oscillatory motion. The mathematical solution to this is (t) = A coswt) where A is the amplitude and w=2nf = 2 is the angular frequency (fis the frequency in Hz and...

  • A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped...

    A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped when moving in the vertical direction by a damping force Famp =-rý, where y is the 1200 kg sitting 4. (a) damping constant. If y is 90% of the critical value; what is the period of vertical oscillation of the car? () by what factor does the oscillation amplitude decrease within one period?...

  • For lightly damped harmonic oscillators the displacement is given by x(t) = (A^(-bt/2m))*cos(ωt + φ) with period T = 2π...

    For lightly damped harmonic oscillators the displacement is given by x(t) = (A^(-bt/2m))*cos(ωt + φ) with period T = 2π / (sqrt((k/m)-(b^2/(4m^2)))). A) Show that this equation of motion obeys the force equation for a damped oscillator: F = −kx − bv. B) Shock absorbers in a pickup truck are designed to have a significant amount of damping. The effective spring constant of the four shock absorbers in a 1600 kg truck have an effective spring constant of 157,000 N/m....

  • 5) A damped simple harmonic oscillator consists of a.40 kg mass oscillating vertically on a spring...

    5) A damped simple harmonic oscillator consists of a.40 kg mass oscillating vertically on a spring with k- 15 N/m with a damping coefficient of .20 kg/s. The spring is initially stretched 17 cm downwards and the mass is released from rest. a) What is the angular frequency of the mass? b) What is the position of the mass at t-3 seconds? c) Sketch a position vs time graph for the mass, showing at least 5 full cycles of oscillation....

  • 1. A 10 kg box is at rest at the end of an unstretched spring with...

    1. A 10 kg box is at rest at the end of an unstretched spring with constant k-4000N/m. The mass is struck with a hummer giving it a velocity of 6.0m/s to the right across a frictionless Surface. What is the amplitude of the resulting oscillations of the system? (a) 2m (b) 0.6m (c) 0.5m (d) 0.4m (e) 0.3m 10 kg 2. When a 0.20kg block is suspended from a vertically hanging spring it stretches the spring from its original...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT