Question

For the control system shown below G(8) (8+10) 6+20) U(8) Y(8) H(s) = 1 design (using the Root-Locus Method) a compensator so

For the control system shown below + G(S) = 820 s(8+10)(8+20) U(s) Y(s) H(s) = 1 design (using the Root-Locus Method) a LAG-L

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
For the control system shown below G(8) (8+10) 6+20) U(8) Y(8) H(s) = 1 design (using...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider a unity feedback control architecture where P(s) = 1/s^2 and C(s) = K * ((s + z)/(s + p)...

    Consider a unity feedback control architecture where P(s) = 1/s^2 and C(s) = K * ((s + z)/(s + p)) . It is desired to design the controller to place the dominant closed-loop poles at sd = −2 ± 2j. Fix the pole of the compensator at −20 rad/sec and use root locus techniques to find values of z and K to place the closed–loop poles at sd . Problem 4 (placing a zero) Consider a unity feedback control architecture...

  • design this compensator using root locus? note: answer using root locus 1- Consider a system with the following...

    design this compensator using root locus? note: answer using root locus 1- Consider a system with the following open loop Transfer Function: G(s)--10 s(s2 + 10s + 16) Design a compensator to obtain a damping ratio-0.5 and a natural frequency n6 rad/sec. (8 marks) We were unable to transcribe this image 1- Consider a system with the following open loop Transfer Function: G(s)--10 s(s2 + 10s + 16) Design a compensator to obtain a damping ratio-0.5 and a natural frequency...

  • Q. 1 (10 marks) For the system in Fig. 1 (a) Assume proportion control. Ge(s) =...

    Q. 1 (10 marks) For the system in Fig. 1 (a) Assume proportion control. Ge(s) = K. sketch the root locus for the closed-loop system (b). Using the angle condition, prove that s1 =-2 +j2 is not on the root locus. (c). Design a lead compensator such that the dominant closed-loop poles are located at s-2tj2. (d). What are the zero and pole of lead compensator Ge(s)? (e). With Ge (s) has the zero and pole found in (c), sketch...

  • 1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design...

    1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design a lead compensator for the closed-loop (CL) system whose open loop transfer function is given below. Design objectives: reduce the time constant by 50% while maintaining the same value of the damping ratio for the dominant poles. Please note that H(s)-1. Please use the method based on root locus plot. G(s) 2 [s(s+2)] Please include detailed step Obtain the location of the desired dominant...

  • Q. 1 (5 marks) For the system in Fig. (a). Assume proportion control, Gc(s)-K, sketch the root lo...

    pls answer dont just copy other solution or ur catching a dislike Q. 1 (5 marks) For the system in Fig. (a). Assume proportion control, Gc(s)-K, sketch the root locus for the closed-loop system (b). Using the angle condition, prove that s12 +j2 is not on the root locus. (c). Design a lead compensator Ge(s) - K such that the dominant closed-loop poles are located at s1--2 2. (d), What are the zero and pole of lead compensator G() (e)....

  • 3. Consider the tilt control block diagram shown below R(s) DesiredG(s) 12 s(s+10)(s+70) Y(s) Til...

    3. Consider the tilt control block diagram shown below R(s) DesiredG(s) 12 s(s+10)(s+70) Y(s) Tilt tilt Design specifications require an overshoot of less than 5% and a settling time of less than 0.6 seconds. (a) Use MATLAB to sketch the root locus (rlocus command) with a proportional controller and use the root locus to determine a value for K (if any) that will satisfy the design requirements (b) Design a lead compensator Ge(s) to satisfy the design specifications. You can...

  • 1. a. Plot the root loci for the unity-feedback system whose feed-forward transfer function is: G(s)...

    1. a. Plot the root loci for the unity-feedback system whose feed-forward transfer function is: G(s) = - s(s? + 4s + 8) If the value of K is set 8, where are the closed loop poles located? (5 Points) Hint: Non-dominant pole is an integer. b. Outline the procedure for design of a lag compensator (on the forward path) that cuts down the rise and settling times to half of the dominant second order system in 1. a. (3...

  • Problem 4 Suppose we have the system shown below operating at 15% overshoot. G(s)- (G) (s +2)%s +5%s+7) Use time domain techniques to design a compensator (and find K) so the appropriate static e...

    Problem 4 Suppose we have the system shown below operating at 15% overshoot. G(s)- (G) (s +2)%s +5%s+7) Use time domain techniques to design a compensator (and find K) so the appropriate static error constant is 20 without appreciably changing the dominant poles of the uncompensated system. There can be no zero pole cancellations. Do not change the dominant poles of the system. Problem 4 Suppose we have the system shown below operating at 15% overshoot. G(s)- (G) (s +2)%s...

  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • 1. Write the MATLAB commands (tf.) and zpk (...)) that yield the following trans fer functions:...

    1. Write the MATLAB commands (tf.) and zpk (...)) that yield the following trans fer functions: ii) Hy=1+1+ ii) H3-3-*+-1 (s + 1)( -2) iv) H. - 3)(8 + 4) 2. Consider the feedback system: C(0) = K * G(s) Determine the values of K, a, and b of C(s) such that the dominant-closed loop poles are located at $12 = -1 j. Use the root locus method. Provide the locations of the dominant poles. You should include the root...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT