Question

A block of mass 10.0 kg is initially observed to be traveling to the left at...

A block of mass 10.0 kg is initially observed to be traveling to the left at a speed of 3.0 m/s. If the block is brought to rest by friction over a distance of 9.0 m, what is the force of friction on the block?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of mass 10.0 kg is initially observed to be traveling to the left at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of ice at 0oC whose mass initially is m = 42.1 kg slides along...

    A block of ice at 0oC whose mass initially is m = 42.1 kg slides along a horizontal surface, starting at a speed v0 = 2.35 m/s and finally coming to rest after traveling a distance d = 2.93 m. Compute the mass of ice melted as a result of the friction between the block and the surface. (Assume that all the heat generated owing to friction goes into the block of ice.)

  • A block of mass m1 = 1.4 kg initially moving to the right with a speed...

    A block of mass m1 = 1.4 kg initially moving to the right with a speed of 3.0 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 2.5 kg initially moving to the left with a speed of 1.8 m/s. The spring constant is 565N/m. What if m1 is initially moving at 3.2 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. (b)...

  • A block of mass m -2.00 kg collides head on with a block of mass m-...

    A block of mass m -2.00 kg collides head on with a block of mass m- 10.0 kg initially at rest on a rough horizontal surface. The block m strikes m2 with a speed of 4.00 m/s. Immediately after the very brief inelastic collision, the 2.00 kg block bounces back with a speed of 1.20 m/s. Ignore the effect of friction during the collision. (a) 4pts.] Calculate the speed of the 10.0 kg block immediately after the collision. (b) 4...

  • 1. A 3.00 kg mass is initially at rest when it is subjected to an applied...

    1. A 3.00 kg mass is initially at rest when it is subjected to an applied force directed in the +x direction and the force of kinetic friction while upon a horizontal surface. The work done by the applied force on the mass is known to be 25.0 J over a particular time interval. a) If the speed of the mass is measured to be 3.50 m/s at the end of the time interval, what is the net work done?...

  • Cart A (mass 2.0 kg) and Cart B (mass 3.0 kg) are separated by a compressed...

    Cart A (mass 2.0 kg) and Cart B (mass 3.0 kg) are separated by a compressed spring and attached to each other by a string. Initially they are sitting at rest on a frictionless surface. When the string is burned, Cart A moves to the left at 1.5 m/s. Cart B moves to the right and encounters a rough surface. Cart B comes to a stop after traveling a distance of 0.35 m on the rough surface. What is the...

  • help 2. Mass mi 10.0 kg is initially held against the spring of spring constant k...

    help 2. Mass mi 10.0 kg is initially held against the spring of spring constant k 100 N/m. The spring is compressed a distance x 0.45 m. When released, m, is fired towards a block of mass m 4.4 kg initially at rest at the edge of a horizontal, frictionless table of height h- 0.75 m. A ramp is placed at the end of the table. The ramp has a coefficient of kinetic friction μ-0.25 and is a distance d...

  • A block of mass m is initially at rest at the top of an inclined plane, which has a height of 5.6 m and makes an angle of θ = 21° with respect to the horizontal

    A block of mass m is initially at rest at the top of an inclined plane, which has a height of 5.6 m and makes an angle of θ = 21° with respect to the horizontal. After being released, it is observed to be traveling at v = 0.55 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the block and the plane is μp = 0.1, and the coefficient...

  • the kinetic energy of the (a) A lead block with a mass of 8.5 kg initially...

    the kinetic energy of the (a) A lead block with a mass of 8.5 kg initially slides over a rough horizontal surface with a speed of 4.3 m/s. Friction slows the block to rest. While slowing rest, 85.0% block absorbed by the block itself as internal energy. What is the temperature increase of the black? (Enter your answer in degrees Celsius.) (b) What happens to the remaining energy? It is so minute that it doesn't factor into the equation. It...

  • 4. A 6-kg block (my), initially at rest on a rough shelf, is connected to a...

    4. A 6-kg block (my), initially at rest on a rough shelf, is connected to a 4-kg block (m2) that hangs by an inextensible string of negligible mass passing over a pulley. The uniform disk-shaped pulley, having a mass of 3.0-kg and a radius of 10 cm, rotates about the symmetry axis through its center. The 6-kg block, which is attached to the spring, is initially pushed against the spring compressing it a distance of 30 cm from its equilibrium...

  • 2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m....

    2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m. The spring is compressed a distance x 0.45 m. When released, m is fired towards a block of mass m2-4.4 kg initially at rest at the edge of a horizontal, frictionless table of height h-0.75 m. A ramp is placed at the end of the table. The ramp has a coefficient of kinetic friction μ.-0.25 and is a distance d-1.06 m long. The blocks...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT