Question

A beam in Figure la is simply supported at A and C and subject to uniformly distributed load of 300 N/m with a moment of magnitude 2700 Nm. Express the shear and moment in terms of x and then sketch the shear and moment diagrams for the beam. 1.

media%2Ff6c%2Ff6cf35b3-ff46-41d6-9e38-f1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

the reaction at supports can be determined by considering moment equilibrium at support A and C

reaction at support A:

let us consider moment equilibrium about support C

2700-6*RA=0

RA=450 N(vertically upwards)

RC=(300*6)-450=1350 N

From A to B:

Shear force =V(x)= RA=450 N

Bending Moment diagram = M(x)=450*x

From B to C:

Shear force =V(x)= 450 - 300*(x-3)=1350-300x

Bending Moment = M(x)=450*x - 300*(x-3)2/2=450*x-150*(x-3)2

from C to D:

Shear Force=V(x)=450+1350-300*(x-3)=2700-300x

Bending moment=M(x)=450*x+1350*(x-6)-300*(x-3)2/2

Add a comment
Know the answer?
Add Answer to:
A beam in Figure la is simply supported at A and C and subject to uniformly...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The beam AC is simply supported at A and C and subjected to the uniformly distributed...

    The beam AC is simply supported at A and C and subjected to the uniformly distributed load of q=300 N/m plus the couple of magnitude M=2700 N·mas shown. Draw shearing force and bending moment diagrams of the beam. Show all the work leading to the diagrams. [35 marks] q L D B CO -3m-1-3----3m--

  • Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and...

    Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and a concentrated load, F, as shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected a) Draw the free body diagram for the beam, showing all the applied and reaction forces. Find the reaction forces F=14 kN .6m b) Give the expression for the shear force, V- V(x), and the bending moment M M(x),...

  • P9.007 (GO Tutorial) A 6.8 m long simply supported wood beam carries a uniformly distributed load...

    P9.007 (GO Tutorial) A 6.8 m long simply supported wood beam carries a uniformly distributed load of 10.6 kN/m, as shown in Figure A. The cross-sectional dimensions of the beam as shown in Figure B are b = 180 mm, d-460 mm, ун-92 mm, and VK-1 44 mm. Section a-a is located at x-1.3 m from B (a) At section a-a, determine the magnitude of the shear stress in the beam at point H. (b) At section a-a, determine the...

  • In Appendix C, see the simply supported beam with a uniformly distributed load. Be careful with...

    In Appendix C, see the simply supported beam with a uniformly distributed load. Be careful with units and the sign convention. For this calculation, the overhung part of the beam from C to D can be ignored, and the beam is treated as a simply supported beam of length 2L1. Be careful with units and the sign convention. The simply supported beam consists of a W530 × 66 structural steel wide-flange shape [ E = 200 GPa; I = 351...

  • QUESTION 2 Beam ABCD is 8 m in length and is pin-supported at A and roller-supported...

    QUESTION 2 Beam ABCD is 8 m in length and is pin-supported at A and roller-supported at C as shown in Figure Q2. A counter-clockwise concentrated moment acts about the support A. A uniformly-distributed load acts on span BC and a vertical concentrated load acts at the free end D a) Determine the reactions at supports A and C. 4 marks) b) Obtain the shear force and the bending moment functions (in terms of x) for each segment along the...

  • Figure 1 shows a simply supported beam with load P applied at point C and D....

    Figure 1 shows a simply supported beam with load P applied at point C and D. If P = 40 kN, L= 3 m and a = 1 m, (a) draw the free-body diagram of the beam; (b) determine the support reaction forces at A and B; (c) determine the shear force and moment in AC, CD and DB sections; (d) draw the shear and moment diagrams of the beam. P P A B D X a a L

  • A5.2 m long simply supported wood beam carries a uniformly distributed load of 12.9 kN/m, as...

    A5.2 m long simply supported wood beam carries a uniformly distributed load of 12.9 kN/m, as shown in Figure A. The cross-sectional dimensions of the beam as shown in Figure Bare b = 195 mm, d = 485 mm. yy = 81 mm, and yx = 167 mm. Section 3-a is located at x = 1.4 m from B. (a) At section a-a, determine the magnitude of the shear stress in the beam at point H. (b) At section a-3,...

  • Q2. A simply supported beam AB (Figure 2) supports a uniformly distributed load of q =...

    Q2. A simply supported beam AB (Figure 2) supports a uniformly distributed load of q = 18kN/m and a concentrated load of P = 23kN at the centre. Consider length of the beam, L = 3m, Young's modulus, E = 200GPa and moment of inertial, I = 30 x 10 mm-. Assume the deflection of the beam can be expressed by elastic curve equations of the form: y(x) = Ax4 + Bx3 + Cx2 + Dx + E. 1) Sketch...

  • The simply supported beam, with a U cross section, is subjected to a uniformly distributed force...

    The simply supported beam, with a U cross section, is subjected to a uniformly distributed force of 8 kN/m and a concentrated load of 12 kN as shown. (a) Determine the reaction at supports A and B, (b) sketch the shear diagram and the moment diagram, (c) determine the location of the neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum...

  • Q2 A simply supported beam of length L = 10 m carries both a uniformly distributed...

    Q2 A simply supported beam of length L = 10 m carries both a uniformly distributed load wof 10 kN/m and a non-uniformly distributed load with a maximum value of w2 =10 kN/m at its roller support, as shown in Figure Q2 (a). The beam is made from a I-section and the thickness for all the three rectangular members is of 10 mm. All other dimensions are illustrated in Figure Q2 (b). Self-weight of the beam is neglected. 300 mm...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT