Question

A 500 hp, three-phase, 2200 V, 60 Hz, 12-pole, Y-connected, wound-rotor induction motor has the following parameters: 5.9 0.2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

VEn) 500 hp V2200 Go ta negtite Now 2 2 2 0235 20.225 2-200 V3 0162 22001s 2 220 2 200 owen Cusq =0.7599 () maainum2.00 120乂60 LW uwiwjivq to ger maiimimum Toy tPex b235tReç Rea- I-2125

Add a comment
Know the answer?
Add Answer to:
A 500 hp, three-phase, 2200 V, 60 Hz, 12-pole, Y-connected, wound-rotor induction motor has the following...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 3-phase, 460 V, 1740 rpm, 60 Hz, 4-pole wound-rotor induction motor has the following parameters...

    A 3-phase, 460 V, 1740 rpm, 60 Hz, 4-pole wound-rotor induction motor has the following parameters per phase: R1 = 0.25 Ω, ' 2R = 0.2Ω, ' 1 2 X = X = 0.5Ω, 30 m X = Ω. The rotational losses are 1700 W. With the rotor terminals short-circuited, find: 1. at starting: • current when started direct on full voltage, • a torque 2. at full load: • slip • current • ratio of starting current to full-load...

  • Problem 3 A three-phase, 230-V, 60-Hz, 12-kW, four-pole wound-rotor induction motor has the following parameters expressed...

    Problem 3 A three-phase, 230-V, 60-Hz, 12-kW, four-pole wound-rotor induction motor has the following parameters expressed in Ω/phase. R 0.095; 0.680; Xs 0.672; Xm 18.7. Using MATLAB, plot the electromagnetic torque as a function of rotor speed in rot/min for rotor resistances of R -0.1, 0.2,0.5, 1.0 and 1.5 .

  • 5. A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 30 hp. Its equivalent...

    5. A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 30 hp. Its equivalent circuit components are R=0.100 Ry=0.070. X - 10.00 R = 250 X; -0.2100 X=0.21002 Praw=500 W P =0.5% of input at full load For a slip of 0.05, find (a) The line current (b) The induced voltage in the rotor (c) The stator power factor (d) The rotor power factor (e) The rotor frequency (f) The stator copper losses (g) The core loss (h)...

  • 1. A 15 hp, 4 pole, 208 V, 60 Hz, Y-connected, three-phase squirrel cage induction motor has the ...

    1. A 15 hp, 4 pole, 208 V, 60 Hz, Y-connected, three-phase squirrel cage induction motor has the following parameters in Ω/phase referred to the stator: R,-0.220, Xi = 0.430, X,-15.0, R2 0.130 and X2-0.430. Mechanical and core losses amount to 300 W and 200 W respectively for rated voltage. (a) The motor is fed with a 60 Hz, 208 V voltage. It runs with a slip of 4.5 %. Find the speed, shaft torque and power, efficiency and power...

  • A 230 V, 50 Hz, three-phase, Y-connected, 6-pole induction motor has the following per-phase parameters R-0.07...

    A 230 V, 50 Hz, three-phase, Y-connected, 6-pole induction motor has the following per-phase parameters R-0.07 Ro 00 0.08 Ω x, x, 0.3 xm 6.33 At a slip of 2%, determine the followings using approximate equivalent circuit of the motor i) The motor speed in rev/min and rad/s. ii) The rotor current. ii) The stator current. iv) The induced torque. v) The efficiency of the motor.

  • 2. A 208V, two pole, 60 Hz, y connected wound rotor induction motor is rated at...

    2. A 208V, two pole, 60 Hz, y connected wound rotor induction motor is rated at 15hp. Its equivalent circuit parameters are R:-0.200, R:-0.120, X.-X-0.410, X-150. The rotational losses are 430W. The motor drives a mechanical load with a slip of 5 percent. By using simplified equivalent circuit calculate; (30 pts) a) The motor speed in revolutions per minute and radians per second. b) The line current c) The stator copper losses. d) The air gap power. e) The power...

  • Consider a 50 kW, 3-phase, 380 V line-to-line, 50 Hz, 6 pole Y-connected wound-rotor induction motor....

    Consider a 50 kW, 3-phase, 380 V line-to-line, 50 Hz, 6 pole Y-connected wound-rotor induction motor. The stator winding ac resistance is 0.1 Ω/phase. The effective stator-to-rotor turns ratio is 2. The exciting branch is negligible. It is found that when an external resistor of 0.09 Ω/phase is connected to the rotor terminals maximum starting torque of 1150 Nm is obtained. a. Compute the internal mechanical power and the internal torque developed by this motor when it drives a load...

  • Name: 23. A 3-phase, 5000 hp, 6000 v,60 Hz, 12-pole wound-rotor induction motor has the 1, resistance between stator terminals-o12 Ω 2. resistance between rotor slip-rings-0.0073 Ω 3. windage and...

    Name: 23. A 3-phase, 5000 hp, 6000 v,60 Hz, 12-pole wound-rotor induction motor has the 1, resistance between stator terminals-o12 Ω 2. resistance between rotor slip-rings-0.0073 Ω 3. windage and friction losses-51 kW following characteristics 4. iron losses in the stator-39 kW 5. locked rotor current at 6000 V-1800 A 6. active power to the stator with rotor locked 2207 kw Calculate under full-load voltage locked-rotor conditions a. Reactive power absorbed by the motor b. FR losses in the stator...

  • A 3-phase, 208 V, 60 Hz, 30 hp, four-pole induction motor

    A 3-phase, 208 V, 60 Hz, 30 hp, four-pole induction motor has the following equivalent circuit parameters. R1 = 0.2 Ω, , , Xm = 12Ω.The rotational loss is 500 W. For a slip of 5%, calculate (a) The motor speed in rpm and radians per sec (b) The current drawn by the motor from the power supply (c) The stator cu-loss (d) The air gap power (e) The rotor cu-loss (f) The shaft power (g)The developed torque and the shaft torque (h) The efficiency of the motor Use...

  • -23 An 8-pole, 230-V, 60-Hz, A-connected, three-phase induction motor has a rotor impedance of 0.025 +...

    -23 An 8-pole, 230-V, 60-Hz, A-connected, three-phase induction motor has a rotor impedance of 0.025 + 0.112/phase. The stator winding impedance is negligible. Determine (a) the speed at which the motor develops the maximum torque, (b) the maximum torque of the motor, and (c) the start- ing torque as a percentage of maximum torque. What additional resistance must be inserted in the rotor circuit to make the starting torque equal to 75% of the maximum torque?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT