Question

In the arrangement shown in the figure below, an object of mass m4.0 kg hangs from a cord around a light pulley. The length o
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hae we haye ハ=6 l6=180> CXラな- T-mg 081 s「エ> 180- 4x9-8 d 77 -2.722 X10J Kgim 22 エー0 - 4 18002x2 2-722 リ1-180 -21チ (C) 190-n 1

Add a comment
Know the answer?
Add Answer to:
In the arrangement shown in the figure below, an object of mass m4.0 kg hangs from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the arrangement shown in the figure below, an object of mass m =4.00 kg hangs...

    In the arrangement shown in the figure below, an object of mass m =4.00 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L = 2.00 m. (Ignore the mass of the vertical section of the cord.) (a) When the vibrator is set to a frequency of 166 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord? kg/m...

  • In the arrangement shown in the figure below, an object of mass m = 2.0 kg...

    In the arrangement shown in the figure below, an object of mass m = 2.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L = 2.0 m. (Ignore the mass of the vertical section of the cord.) (a) When the vibrator is set to a frequency of 140 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord?...

  • An object with the mass m= 2.0 kg hangs from a cord around a light pulley....

    An object with the mass m= 2.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L= 2.0 m (Ignore the mass of the vertical section of the cord) a) When the vibrator is set to a frequency of 160 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord in kg/m? b) How many loops (if any) will...

  • In the arrangement shown below, an object can be hung from a string (with linear mass...

    In the arrangement shown below, an object can be hung from a string (with linear mass density μ = 0.002 00 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is L = 2.30 m. When the mass m of the object is either 9.0 kg or 16.0 kg, standing waves are observed; no standing waves are observed with...

  • parts c and d please steps would be helpful in the arrangement shown below, an object...

    parts c and d please steps would be helpful in the arrangement shown below, an object can be hung from a sting with linear mass density μ 0.00200 kg m that passes over a light pulley. The string is connected to a vibrator of constant frequency and the length of the string between polnt P and the pulley Iis L 1.90 m. When the mass m of the object is elther 25.0 ka or 36.0 kg, standing waves are observed;...

  • A counterweight of mass m = 5.20 kg is attached to a light cord that is wound around a pulley as shown in the figure below

    A counterweight of mass m = 5.20 kg is attached to a light cord that is wound around a pulley as shown in the figure below. The pulley is a thin hoop of radius R = 7.00 cm and mass M = 2.80 kg. The spokes have negligible mass. (a) What is the net torque on the system about the axle of the pulley?(b) When the counterweight has a speed v, the pulley has an angular speed w = V/R. Determine...

  • A counterweight of mass m = 5.30 kg is attached to a light cord that is...

    A counterweight of mass m = 5.30 kg is attached to a light cord that is wound around a pulley as shown in the figure below. The pulley is a thin hoop of radius R = 9.00 cm and mass M = 2.50 kg. The spokes have negligible mass. M (a) What is the net torque on the system about the axle of the pulley? magnitude Nim direction ---Select--- (b) When the counterweight has a speed v, the pulley has...

  • In the figure, a cord runs around two massless, frictionless pulleys. A canister with mass m...

    In the figure, a cord runs around two massless, frictionless pulleys. A canister with mass m = 42 kg hangs from one pulley, and you exert a force F on the free end of the cord. (a) What must be the magnitude of F if you are to lift the canister at a constant speed? (b) To lift the canister by 4.0 cm, how far must you pull the free end of the cord? During that lift, what is the...

  • A counterweight of mass m = 5.40 kg is attached to a light cord that is...

    A counterweight of mass m = 5.40 kg is attached to a light cord that is wound around a pulley as shown in the figure below. The pulley is a thin hoop of radius R = 9.00 cm and mass M = 1.50 kg. The spokes have negligible mass. (a) What is the net torque on the system about the axle of the pulley? magnitude N·m direction ---Select--- (b) When the counterweight has a speed v, the pulley has an...

  • In the figure below, the hanging object has a mass of m_1 = 0.400 kg; the...

    In the figure below, the hanging object has a mass of m_1 = 0.400 kg; the sliding block has a mass of m_2 = 0.770 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R_1 = 0.020 0 m, and an cuter radius of R_3 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT