Question

Three carts of masses m1 = 4.50 kg, m2 = 8.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of v1 = 4.00 m/s to the right, v2 = 3.00 m/s to the right, and v3 below. Velcro couplers make the carts stick together after colliding. 3.50 m/s to the left, as shown Ims (a) Find the final velocity of the train of three carts. magnitude direction G-Select--#) m/s (b) Does your answer require that all the carts collide and stick together at the same moment? Yes 0 No What if they collide in a different order? This answer has not been graded yet Need Help?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Three carts of masses m1 = 4.50 kg, m2 = 8.50 kg, and m3 = 3.00...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Three carts of masses m1 = 3.50 kg, m2 = 8.00 kg, and m3 = 3.00...

    Three carts of masses m1 = 3.50 kg, m2 = 8.00 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of v1 = 7.00 m/s to the right, v2 = 3.00 m/s to the right, and v3 = 5.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding. (a) Find the final velocity of the train of three carts. Give me the magnitude in m/s.

  • An object has a kinetic energy of 296 J and a momentum of magnitude 21.3 kg-m/s....

    An object has a kinetic energy of 296 J and a momentum of magnitude 21.3 kg-m/s. Find the speed and the mass of the object. speed m/s mass kg Three carts of masses m_1 = 5.00 kg, m_2 = 9.50 kg, and m_3 = 3.00 kg move on a frictionless, horizontal track with speeds of V_1 = 7.00 m/s to the right, v_2 = 3.00 m/s to the right, and v_3 = 3.50 m/s to the left, as shown below....

  • Part II: Show your work and explain your reasoning Chapter 8 F. Three gliders of masses...

    Part II: Show your work and explain your reasoning Chapter 8 F. Three gliders of masses 4.00 kg, 10.0kg, and 3.00 kg move on a frictionless horizontal track with x-velocities of 5.00 m/s, 3.00 m/s, and -4.00 m/s, as shown. Velcro couplers make the gliders stick together after colliding. 5.00 m/s 3.00 m/s -4.00 m/s (a) Find the final velocity of the train of three gliders. [Answer: 2.241 m/s] (b) Does your answer require that all the gliders collide and...

  • Two masses collide elastically (hit & bounce) where m1 = 0.5 kg, m2 = 1.5 kg,...

    Two masses collide elastically (hit & bounce) where m1 = 0.5 kg, m2 = 1.5 kg, v1 = 1 m/s, v2 = 0 m/s Calculate the speeds of the balls after the collisions by using the formulas for elastic collisions: v1' = [v1 * (m1-m2) / (m1+m2)] + [v2 * (2m2) / (m1+m2)] v2' = [v1 * (2m1) / (m1+m2)] - [v2 * (m1-m2) / (m1+m2)]

  • three carts of masses 4.0kg, 10kg, and 3.0kg move on a frictionless horizontal track with speeds of 5.0m/s, 3.0m/s, and 4.0m/s

    three carts of masses 4.0kg, 10kg, and 3.0kg move on a frictionless horizontal track with speeds of 5.0m/s, 3.0m/s, and 4.0m/s. The carts stick together after colliding. find the velocity of the three carts.

  • Imagine two carts with different masses colliding (m1 = 1.0 kg, m2 = 2.0 kg). If...

    Imagine two carts with different masses colliding (m1 = 1.0 kg, m2 = 2.0 kg). If cart one is initially moving at 10 m/s and the other cart is stationary, calculate the final speed of each mass after they have a 100% elastic collision. Please show all work!

  • Three Velcro blocks, i.e Velcro on their ends, are shown below. The masses and velocities of...

    Three Velcro blocks, i.e Velcro on their ends, are shown below. The masses and velocities of the blocks are m1 = 7.6 kg, v, = 11.0 m/s. m2 = 10.0 kg, v2 = 4.0 m/s and m3 = 4.0 kg, v3 = 2.0 m/s. Mass m, collides with m2 and the two collide with m3, both collisions perfectly inelastic. The masses then collide with a spring (not shown) with a spring constant of 2.7 times 104 N/m. (a) What is...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • Three uniform spheres of masses m1 = 2.50 kg, m2 = 4.00 kg, and m3 =...

    Three uniform spheres of masses m1 = 2.50 kg, m2 = 4.00 kg, and m3 = 8.00 kg are placed at the corners of a right triangle (see figure below). Calculate the resultant gravitational force on the object of mass m2, assuming the spheres are isolated from the rest of the Universe.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT