Question

three carts of masses 4.0kg, 10kg, and 3.0kg move on a frictionless horizontal track with speeds of 5.0m/s, 3.0m/s, and 4.0m/s

three carts of masses 4.0kg, 10kg, and 3.0kg move on a frictionless horizontal track with speeds of 5.0m/s, 3.0m/s, and 4.0m/s. The carts stick together after colliding. find the velocity of the three carts.
0 0
Add a comment Improve this question Transcribed image text
Answer #1
I will have to assume that they were all moving in the same direction.
Momentum is conserved here, energy is not.
Initial momentum
4*5 + 10*3 + 3*4 = 62 kg m/s
final momentum
(4+10+3)v = 17 v
so
17 v = 62
v = 3.64
However I do not think they will collide if they are all moving in the same direction at the beginning. After the 4 kg mass catches up and joins the 10 kg mass, the two together are unlikely to catch the 3 kg mass. I have a hunch something is wrong with your problem statement
answered by: Mckey
Add a comment
Know the answer?
Add Answer to:
three carts of masses 4.0kg, 10kg, and 3.0kg move on a frictionless horizontal track with speeds of 5.0m/s, 3.0m/s, and 4.0m/s
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Three carts of masses m1 = 3.50 kg, m2 = 8.00 kg, and m3 = 3.00...

    Three carts of masses m1 = 3.50 kg, m2 = 8.00 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of v1 = 7.00 m/s to the right, v2 = 3.00 m/s to the right, and v3 = 5.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding. (a) Find the final velocity of the train of three carts. Give me the magnitude in m/s.

  • Three carts of masses m1 = 4.50 kg, m2 = 8.50 kg, and m3 = 3.00...

    Three carts of masses m1 = 4.50 kg, m2 = 8.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of v1 = 4.00 m/s to the right, v2 = 3.00 m/s to the right, and v3 below. Velcro couplers make the carts stick together after colliding. 3.50 m/s to the left, as shown Ims (a) Find the final velocity of the train of three carts. magnitude direction G-Select--#) m/'s (b) Does your answer require...

  • An object has a kinetic energy of 296 J and a momentum of magnitude 21.3 kg-m/s....

    An object has a kinetic energy of 296 J and a momentum of magnitude 21.3 kg-m/s. Find the speed and the mass of the object. speed m/s mass kg Three carts of masses m_1 = 5.00 kg, m_2 = 9.50 kg, and m_3 = 3.00 kg move on a frictionless, horizontal track with speeds of V_1 = 7.00 m/s to the right, v_2 = 3.00 m/s to the right, and v_3 = 3.50 m/s to the left, as shown below....

  • Part II: Show your work and explain your reasoning Chapter 8 F. Three gliders of masses...

    Part II: Show your work and explain your reasoning Chapter 8 F. Three gliders of masses 4.00 kg, 10.0kg, and 3.00 kg move on a frictionless horizontal track with x-velocities of 5.00 m/s, 3.00 m/s, and -4.00 m/s, as shown. Velcro couplers make the gliders stick together after colliding. 5.00 m/s 3.00 m/s -4.00 m/s (a) Find the final velocity of the train of three gliders. [Answer: 2.241 m/s] (b) Does your answer require that all the gliders collide and...

  • Two carts are sitting on air track (frictionless surface). Assume cart A has mass of .50...

    Two carts are sitting on air track (frictionless surface). Assume cart A has mass of .50 kg, cart B has mass of 1.0 kg. You push cart A and give it an initial speed of 5.0 m/s toward B which was originally at rest. The two carts stick together and move together. Right after collision, the air is turned off so the two carts slide to a stop due to kinetic friction. Assume the coefficient of kinetic friction is .20....

  • Question 8. (15 Marks) Two gliders move toward each other on a frictionless track (Figure O8a)....

    Question 8. (15 Marks) Two gliders move toward each other on a frictionless track (Figure O8a). Glider A has a mass of 0.50 kg, and glider B has a mass of 0.30 kg: both gliders move with an initial speed of 2.0 m/s. (a) Assume that after the collision, glider B moves away with a final velocity of +2.0 m/s (Figure Q8c). What is the final velocity of A? (b) Assume that after the collision, the two gliders stick together...

  • Block 1, of mass m1m1m_1 = 6.70 kgkg , moves along a frictionless air track with...

    Block 1, of mass m1m1m_1 = 6.70 kgkg , moves along a frictionless air track with speed v1v1v_1 = 27.0 m/sm/s . It collides with block 2, of mass m2m2m_2 = 57.0 kgkg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Figure 1 of 1The figure shows two states of a system of two blocks, labeled 1 and 2, of masses m 1 and m 2, respectively. Block 2 is to the right...

  • 1. Mass "A" (1.2kg) sliding right at 6.0m/s collides head-on with mass "B" (2.8kg) sliding left...

    1. Mass "A" (1.2kg) sliding right at 6.0m/s collides head-on with mass "B" (2.8kg) sliding left at 1.8m/s, all on a horizontal frictionless surface. If the masses stick together and move off as one a) find the final velocity V of the stuck together pair b) find AEch of the collision in (a) On the other hand, if the masses collide elastically c) find V'A and V's after collision d) what is AEK? e) what is the impulse (magnitude and...

  • Collision Problem Elastic and Inelastic: Two carts are on a frictionless surface as depicted below. 5...

    Collision Problem Elastic and Inelastic: Two carts are on a frictionless surface as depicted below. 5 m/s 20 kg 10 kg Frictionless surface Part 1. What is the common velocity just after impact if the two stick together, an inelastic collision? Give your answer to 3 significant digits. m/s Part 2. How much Kinetic energy is lost? Give your answer to 3 significant digits. J Part 3. If instead the collision is elastic, what is the velocity of the 10...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT