Question

2) Two solid rubber balls (one of mass m and radius r, and the other of mass M and radius R) roll without slipping up an incl
0 0
Add a comment Improve this question Transcribed image text
Answer #1

02 5 2 R2 By conservation of Energy Mgh-1 Mv+ I w? v=Rw = w = I = 3 MR? Mgh=IMV2 + 1 X 2 MR² x y z gh= y2 + y² Th= 7,27 - As

Add a comment
Know the answer?
Add Answer to:
2) Two solid rubber balls (one of mass m and radius r, and the other of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H l...

    Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H leading to a circular loop-the loop. The center of mass of the ball will move in a circle of radius R if it goes around the loop. The moment of inertia of a solid ball is Ibull--mr. (a) Find an expression for the minimum height H for which the ball barely goes around the loop, staying...

  • 2) A solid uniform ball of mass m and radius r rolls down a hemispherical bowl...

    2) A solid uniform ball of mass m and radius r rolls down a hemispherical bowl of radius R, starting from a height h above the bottom of the bowl. The surface on the left half of the bowl has sufficient friction to prevent slipping, and the right side is frictionless. R (a) (5 marks) Determine the angular speed w the ball rotates in terms of e', when it rolls without slipping. (b) (5 marks) Derive an expression for the...

  • Problem 4. A solid sphere of mass m and radius r rolls without slipping along the...

    Problem 4. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height h 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/S mr. The...

  • Problem 4 A uniform solid spherical ball of mass M and radius R rests on a horizontal surface. Assume a constant coeffi...

    Problem 4 A uniform solid spherical ball of mass M and radius R rests on a horizontal surface. Assume a constant coefficient of friction (this means that the frictional force is equal to the normal force multiplied by u). The acceleration due to gravity is g. At time t 0, the bal is struck impulsively on center, causing it to go instantaneously from rest to initial rotation horizontal speed vo with a no (a) Find the horizontal speed, and the...

  • 1) A solid ball of mass M and radius R rolls without slipping down a hill...

    1) A solid ball of mass M and radius R rolls without slipping down a hill with slope tan θ. (That is θ is the angle of the hill relative to the horizontal direction.) What is the static frictional force acting on it? It is possible to solve this question in a fairly simple way using two ingredients: a) As derived in the worksheet when an object of moment of inertia I, mass M and radius R starts at rest...

  • A solid sphere of mass M and radius R sits on a an incline of angle...

    A solid sphere of mass M and radius R sits on a an incline of angle θ, when it is let go it rolls down-hill without slipping at total vertical distance of h. At the bottom of the hill the ball moves onto a horizontal surface and enters into a completely elastic collision with a stationary block of height 2R and mass 2M. Find the speed of the block right after the collision.

  • (11 points) A uniform solid sphere of mass m and radius r is placed inside a...

    (11 points) A uniform solid sphere of mass m and radius r is placed inside a hemispherical bowl of radius R. The sphere is released from rest at an angle theta and rolls without slipping. (a) (6 points) Using Conservation of Energy, to find an expression for the angular speed of the sphere when it reaches the lowest point of the bowl. (b) (6 points) Find the magnitude of the centripetal acceleration of the center of mass of the sphere...

  • Problem 4. A solid sphere of mass m and radius rrolls without slipping along the track...

    Problem 4. A solid sphere of mass m and radius rrolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/5 mr. The ball should...

  • two uniform solid spheres with mass M and radius R and the other with mass M...

    two uniform solid spheres with mass M and radius R and the other with mass M and radiius Rb =2R, are connected by a thin uniform rod of length L=2R and mass M. find an expression for the moment of inertia I about the axis through the center of the rod. wrtie an expression in terms of M, R, and a numerical factor in fraction form Mandard and the chamad conected by a thirred of 2R and Find an expression...

  • M Two uniform, solid spheres (one has a mass M and a radius R and the...

    M Two uniform, solid spheres (one has a mass M and a radius R and the other has a mass M and a radius R. = 2R) are connected by a thin, uniform rod of length L = 4R and mass M. Note that the figure may not be to scale. Find an expression for the moment of inertia I about the axis through the center of the rod. Write the expression in terms of M, R, and a numerical...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT