Question

PLEASE ANSWER #6

PLEASE ANSWER #6

Figure 1 presents a seawater cooled steam ejector refrigeration/Heat Pump System for Naval Surface Ship Applications. A Steam

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Stream working fluid 0 ° Paz 2008pa À T2 = 300c T1 = 400 P = Book på Juler conditions Vi = lomas Tsar @ bookpa = 170.4c Suple

State The Steady flow energy equation for nozzle is given by ni Chit ve t zig) + 6 = melha + 12 + Zug) + in = niza ni å = - D

Add a comment
Know the answer?
Add Answer to:
PLEASE ANSWER #6 PLEASE ANSWER #6 Figure 1 presents a seawater cooled steam ejector refrigeration/Heat Pump...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a heat pump operating according to the vapor compression refrigeration cycle, the refrigerant is R-134a....

    In a heat pump operating according to the vapor compression refrigeration cycle, the refrigerant is R-134a. A water source of 11 °C is used to heat a house with a heating load of 17 kW. Refrigerant enters the compressor as saturated steam at 100 kPa pressure and rises at 1.6 MPa, 60 ° C. The temperature of the refrigerant at the outlet of the condenser is 30°C. a) The amount of heat at the beginning of the water, b) Compressor...

  • Problem #3 Refrigerant R-134a enters the condenser of a heat pump at 1000 kPa and 80°C...

    Problem #3 Refrigerant R-134a enters the condenser of a heat pump at 1000 kPa and 80°C at a rate of 0.025 kg/s and leaves at 1000 kPa as saturated liquid. If the compressor consumes 2 kW of power, determine: a) The COP of the heat pump (as heating device). b) The rate of heat absorption from the outside air. тан Condenser Throttling valve Compressor Evaporator To

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34°C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat transfer...

  • Problem #2 (30 The steam cycle described in Problem #1 wasted a significant amount of exergy to t...

    Problem #2 (30 The steam cycle described in Problem #1 wasted a significant amount of exergy to the cooling water. A real cycle might cascade the energy down to a lower temperature cycle to utilise some of this exergy (regeneration). It might also use the heat to execute an industrial process (cogeneration). The cycle described below does both! inSeam generator Turbine 1.5 bar H20 cycle To industrial process H2OR-134a heat exchanger Turbine Refrigerant cycle R-134a cycle Pump Condenser Pump Return...

  • vapour carried with air. cooling section is de The steam enters into the ce condenser with...

    vapour carried with air. cooling section is de The steam enters into the ce condenser with separate air pump for removing the air only and providing separate air signed to condense 20 tons of steam per hour. The air leakage per hour is 6 kg e temperature of the condensate is 36°C and temperature near the suction of air pump is 28 C. condenser at 39°C and temperature near suction of air pump is 28°C. steam enters into the condenser...

  • Please also draw the T-S diagrams and PH diagrams to facilitate understanding. Thank you. 5. The refrigeration system s...

    Please also draw the T-S diagrams and PH diagrams to facilitate understanding. Thank you. 5. The refrigeration system shown below is another variation of the basic vapor compression refrigeration system which attempts to reduce the compression work. In this system, a heat exchanger is used to superheat the vapor entering the compressor while sub-cooling the liquid exiting from the condenser Consider a system of this type that uses refrigerant-134a as its refrigerant and operates the evaporator at -10°C, and the...

  • Match the T-s diagram with its corresponding modified refrigeration system a: Decrease in compressor work 3...

    Match the T-s diagram with its corresponding modified refrigeration system a: Decrease in compressor work 3 Ou Increase in refrigeration capacity b: т. 6 c : ex QR A 6 lu O a: cascade b: multi stage compression c: multi purpose with single compressor a: multi stage compression b: cascade c: multipurpose with single compressor a: multi purpose with single compressor b: cascade c: multi stage compression In a steam power plant operating on an ideal Rankine cycle, enters the...

  • 1. (20 points) Consider a cogeneration system operating at steady state. Superheated steam enters the first...

    1. (20 points) Consider a cogeneration system operating at steady state. Superheated steam enters the first turbine stage at 6 MPa, 540 °C. Between the first and second stages, 45% of the steam is extracted at 500 kPa and diverted to a process heating load of 5 x 108 kl/h. Condensate exits the process heat exchanger at 450 kPa with specific enthalpy of 589.13 kl/kg and is mixed with liquid exiting the lower pressure pump at 450 kPa. The entire...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT