Question

A piston-cylinder device contains water which is initially at 100 C and 20 bar. It undergoes...

A piston-cylinder device contains water which is initially at 100 C and 20 bar. It
undergoes two processes. The first process is isothermal and the second process is
constant volume. The final condition is a saturated vapour at 2 bar. Calculate heat
transfer and work (both in kJ/kg) for each process.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

dassmate Date -at Wate A-3 t usina Table Dress ure table Ve State is subcooled sng Table A-2 Sat csater erature le at Tị こ 10lussmate. Date (80+273)(4.507-1.3069 1194 903 -Up. 25295- 1523-5 1006 k3 k Constan Volume

Add a comment
Know the answer?
Add Answer to:
A piston-cylinder device contains water which is initially at 100 C and 20 bar. It undergoes...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • A piston-cylinder assembly contains propane, initially at 27 °C, 1 bar, and a volume of 0.2...

    A piston-cylinder assembly contains propane, initially at 27 °C, 1 bar, and a volume of 0.2 m3 . The propane undergoes a process to a final pressure of 6 bar, during which the pressure-volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored. Problem 10. A piston-cylinder assembly contains propane, initially at 27 'C, 1 bar, and a volume of 0.2 m2. The propane...

  • 1.) a) Water in a piston–cylinder assembly undergoes a constant-pressure process at 30 bar from T1...

    1.) a) Water in a piston–cylinder assembly undergoes a constant-pressure process at 30 bar from T1 = 255.1°C to saturated vapor. Determine the work for the process, in kJ per kg of water. b) A piston-cylinder assembly contains 4.4 kg of water at 238oC and 3 bar. The water is compressed to a saturated vapor state where the pressure is 53.9 bar. During compression, there is a heat transfer of energy from the water to its surroundings having a magnitude...

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 200°C....

    Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 200°C. The water is slowly heated at constant pressure to a final state. The heat transfer for the process is 3260 kJ and kinetic and potential energy effects are negligible. Determine the final volume, in m3, and the work for the process, in kJ.

  • 3.83 A piston-cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.2...

    3.83 A piston-cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.2 mº. The propane undergoes a process to a final pressure of 4 bar, during which the pressure-volume relationship is pl.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored.

  • A piston-cylinder device initially contains 1.78 kg saturated liquid water at 200°C. Now heat is transferred...

    A piston-cylinder device initially contains 1.78 kg saturated liquid water at 200°C. Now heat is transferred to the water until the volume quadruples and the cylinder contains saturated vapor only. Determine (a) the final volume of the tank, m (Round to six decimal places.) (b) the final temperature and pressure, MPa and (c) the internal energy change of the water kJ 0 Water 1.78 kg 200 C

  • Water in a piston-cylinder assembly is initially at a pressure of 10 bar and a temperature...

    Water in a piston-cylinder assembly is initially at a pressure of 10 bar and a temperature of 500 C. The water is cooled and compressed at constant pressure until it becomes a saturated vapor. The water is then cooled at a constant volume until it reaches a temperature of 150 C. a) Sketch both processes on T-v and p-v diagrams (v here is specific volume). b) Determine the total work for the overall processes. c) Determine the heat transfer for...

  • 3. A piston-cylinder device initially contains 3 kg saturated liquid water at 500 kPa. Now heat...

    3. A piston-cylinder device initially contains 3 kg saturated liquid water at 500 kPa. Now heat is transferred to the water until the cylinder contains saturated vapor only. Determine water m = 3 kg p = 500 kPa a) The initial and final volume of the cylinder, b) The boundary work of the piston, and c) The heat added to the system

  • Carbon dioxide contained in a piston-cylinder arrangement, initially at 6 bar and 400K, undergoes an expansion...

    Carbon dioxide contained in a piston-cylinder arrangement, initially at 6 bar and 400K, undergoes an expansion to a final temperature of 298 k, during which the pressure-volume relationship if pV^1.2 = constant. Assuming the ideal gas model for the CO2, determine the final pressure, in bar, and the work and heat transfer, each in kJ/kg

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT