Question

Water in a piston-cylinder assembly is initially at a pressure of 10 bar and a temperature...

Water in a piston-cylinder assembly is initially at a pressure of 10 bar and a temperature of 500 C. The water is cooled and compressed at constant pressure until it becomes a saturated vapor. The water is then cooled at a constant volume until it reaches a temperature of 150 C.

a) Sketch both processes on T-v and p-v diagrams (v here is specific volume).

b) Determine the total work for the overall processes.

c) Determine the heat transfer for the overall process.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Water in a piston-cylinder assembly is initially at a pressure of 10 bar and a temperature...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water vapor initially at 10 bara and 400°C is contained within a piston-cylinder assembly. The water...

    Water vapor initially at 10 bara and 400°C is contained within a piston-cylinder assembly. The water is cooled at constant volume until its temperature is 150°C. The water is then condensed isothermally to saturated liquid. Sketch the process in T-v coordinates. Clearly label the three states. For the water as the system, (a) write the symbolic equation for the specific work (and simplify), w; and (b) evaluate the specific work, in kJ/kg.

  • Referring to the figure shown below, water contained in a piston–cylinder assembly, initially at 1.5 bar...

    Referring to the figure shown below, water contained in a piston–cylinder assembly, initially at 1.5 bar and a quality of 60%, is heated at constant pressure until the piston hits the stops. Heating then continues until the water is saturated vapor. The initial height, L1, is 0.05 m and the change in height, L2, is 0.03 m. For the overall process of the water, evaluate the work and heat transfer, each in kJ/kg. Kinetic and potential effects are negligible.

  • 1.) a) Water in a piston–cylinder assembly undergoes a constant-pressure process at 30 bar from T1...

    1.) a) Water in a piston–cylinder assembly undergoes a constant-pressure process at 30 bar from T1 = 255.1°C to saturated vapor. Determine the work for the process, in kJ per kg of water. b) A piston-cylinder assembly contains 4.4 kg of water at 238oC and 3 bar. The water is compressed to a saturated vapor state where the pressure is 53.9 bar. During compression, there is a heat transfer of energy from the water to its surroundings having a magnitude...

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • Consider 2 kg of water in a closed piston-cylinder assembly, initially at 10 bar and 500...

    Consider 2 kg of water in a closed piston-cylinder assembly, initially at 10 bar and 500 C, undergoing a constant pressure cooling process until the volume occupied by the water is one-half of its initial volume. Determine the heat transfer involved in the process.

  • Need Help with Thermodynamics Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at...

    Need Help with Thermodynamics Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 239°C from a pressure of 5.6 bar to a pressure of 3.4 bar. Evaluate the work, in kJ/kg. ------------------------------------------------------------------------------------------------------------------------------------------------------------------- Water, initially saturated vapor at 10.7 bar, fills a closed, rigid container. The water is heated until its temperature is 200°C. For the water, determine the heat transfer, in kJ/kg. Kinetic and potential energy effects can be ignored.

  • A piston-cylinder assembly contains 2.8 kg of water at 237.3°C and 3 bar. The water is...

    A piston-cylinder assembly contains 2.8 kg of water at 237.3°C and 3 bar. The water is compressed to a saturated vapor state where the pressure is 52 bar. During compression, there is a heat transfer of energy from the water to its surroundings having a magnitude of 213 kJ. Neglecting changes in kinetic energy and potential energy, determine the work, in kJ, for the process of the water.

  • 2) A) Water, initially saturated vapor at 10.8 bar, fills a closed, rigid container. The water...

    2) A) Water, initially saturated vapor at 10.8 bar, fills a closed, rigid container. The water is heated until its temperature is 200°C. For the water, determine the heat transfer, in kJ/kg. Kinetic and potential energy effects can be ignored. B) A piston-cylinder assembly contains 2 kg of water at 210.6oC and 3 bar. The water is compressed to a saturated vapor state where the pressure is 50.7 bar. During compression, there is a heat transfer of energy from the...

  • (30 points) A magic substance (identical phase change temperatures to water, but having difference thermodynamic properties)...

    (30 points) A magic substance (identical phase change temperatures to water, but having difference thermodynamic properties) contained in a piston-cylinder assembly undergoes two processes in series from an initial state where the pressure is 10 bar and the temperature is 400 C. In Process 1-2, the substance is cooled as it is compressed at a constant pressure of 10 bar to the saturated vapor state. In Process 2-3, the substance is cooled further at constant volume to 150 °C. a....

  • Please answer fast Saturated liquid at a pressure 200 bar is contained in a piston-cylinder system...

    Please answer fast Saturated liquid at a pressure 200 bar is contained in a piston-cylinder system at a volume of V 0.01 m3. The system undergoes a two-step process, which is the following: (1) A constant volume cooling process to a temperature of 200°C; and (2) A constant pressure expansion to 320°C following process 1. Determine the work and heat transfer for both processes and show the processes on p-v and t-v diagrams.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT