Question

In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.15...

In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.15 × 106 m/s. Find the central force acting on the electron as it revolves in a circular orbit of radius 5.2 × 10−11 m. Answer in units of N. (part 2 of 2) Find the centripetal acceleration of the electron. Answer in units of m/s 2

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.15...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton...

    In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted (quantized) to certain values given by r = n^2a_0, for n = 1, 2, 3, ..., where a_0 = 52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the seventh smallest orbit? (c) If the electron moves to larger orbits, does its...

  • In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of...

    In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of radius with a speed of5.3 x 10^-11m with a speed of 2.2 x 10^6 m/s.Find the magnitude of the magnetic field that the electron produces at the location of the nucleus (treated as a point).B = _____T

  • In the Bohr model of the Hydrogen atom, a single electron orbits around a single proton...

    In the Bohr model of the Hydrogen atom, a single electron orbits around a single proton (which constitutes the nucleus). The mass of the electron (9.11x10-31 kg) is much less than the proton (1.67x10-27 kg), so the proton remains stationary while the electron moves around it. If the electron is 6.6x10-11 m away from the proton, calculate the magnitude of the electric force (in N) exerted by the proton on the electron. b)   [Continued ...] In the Bohr model, an...

  • The Bohr model of the hydrogen atom treats the atom as consisting of an electron orbiting...

    The Bohr model of the hydrogen atom treats the atom as consisting of an electron orbiting a massive, stationary proton in a circular path of radius ao, equal to 0.529*10^-10 m. Calculate the speed of an electron in this circular orbit. Calculate the electric potential at a radius 0.4*ao, measured from the proton. Is gravity a significant factor in this situation? Does the problem statement make any assumptions that might be invalid? pt a. (7 pts) Find the value of...

  • In the Bohr model, the hydrogen atom consists of an electron in a circular orbit of...

    In the Bohr model, the hydrogen atom consists of an electron in a circular orbit of radius a0 = 5.29 x 10-11 m around the nucleus. Using this model, and ignoring relativistic effects, what is the speed of the electron? The mass of the electron is 9.11 X 10-31 kg.

  • In the bohr model of the hydrogen atom the electron is in a circular orbit of...

    In the bohr model of the hydrogen atom the electron is in a circular orbit of r = 5.29 x 10^-11m around the nuclear proton. The mass of the electron is 9.11 x 10^ -31 kg. Find the speed of the electron. Hint: use Coulomb’s law and the concept of the force for an object going in a circular motion.

  • In the Bohr model of the hydrogen atom, the electron in the n = 6 level...

    In the Bohr model of the hydrogen atom, the electron in the n = 6 level moves in a circular orbit of radius 1.91 x 10m around the proton. Assume the orbital angular momentum of the electron is equal to 6h/2. (a) Calculate the orbital speed of the electron. m/s (b) Calculate the kinetic energy of the electron (c) Calculate the angular frequency of the electron's motion. rad/s

  • In the Bohr model of the hydrogen atom, the electron in the n = 24 level...

    In the Bohr model of the hydrogen atom, the electron in the n = 24 level moves in a circular orbit of radius 3.05 x 10-8 m around the proton. Assume the orbital angular momentum of the electron is equal to 24h/21. (a) Calculate the orbital speed of the electron. 2.87e5 Your response differs from the correct answer by more than 100%. m/s (b) Calculate the kinetic energy of the electron. (c) Calculate the angular frequency of the electron's motion....

  • In the Bohr model of the hydrogen atom, the electron in the n = 4 level...

    In the Bohr model of the hydrogen atom, the electron in the n = 4 level moves in a circular orbit of radius 8.47 x 10-10 m around the proton. Assume the orbital angular momentum of the electron is equal to 4h/21. (a) Calculate the orbital speed of the electron. 5.46e5 ✓ m/s (b) Calculate the kinetic energy of the electron. 1.36e-19 (c) Calculate the angular frequency of the electron's motion. 1.026e1 rad/s Need Help? | Read It

  • 3. In the Bohr model of the hydrogen atom , an electron in the lowest energy...

    3. In the Bohr model of the hydrogen atom , an electron in the lowest energy state moves at a speed of 2.19 x 10^6 m/s in a circular path of radius 5.29 x 10^-11 m. a) What is the circumference of the circular path made by the e-? b) Use this distance to find the time needed to make 1 orbit. c) Using the time for 1 orbit, determine how many orbits the e- would make in 1 sec....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT