Question

Assignment 7 Problem 1. [100pt] The Hamiltonian for a spin-1/2 particle with charge te in an external magnetic field is ges.B 2mc Calculate the operator ds/dt if B = Bu, what is S2(t) in matrix form?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

dsz em to at七-9plz press thumb up and ask if you have any doubt.

Thank you!

Add a comment
Know the answer?
Add Answer to:
Assignment 7 Problem 1. [100pt] The Hamiltonian for a spin-1/2 particle with charge te in an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • qm 2019.3 3. The Hamiltonian corresponding to the magnetic interaction of a spin 1/2 particle with...

    qm 2019.3 3. The Hamiltonian corresponding to the magnetic interaction of a spin 1/2 particle with charge e and mass m in a magnetic field B is À eB B. Ŝ, m where Ŝ are the spin angular momentum operators. You should make use of expres- sions for the spin operators that are given at the end of the question. (i) Write down the energy eigenvalue equation for this particle in a field directed along the y axis, i.e. B...

  • A spin-1 particle interacts with an external magnetic field B = B. The interaction Hamiltonian for the system is H = gB-S, where S-Si + Sỳ + SE is the spin operator. (Ignore all degrees of freedom ot...

    A spin-1 particle interacts with an external magnetic field B = B. The interaction Hamiltonian for the system is H = gB-S, where S-Si + Sỳ + SE is the spin operator. (Ignore all degrees of freedom other than spin.) (a) Find the spin matrices in the basis of the S. S eigenstates, |s, m)) . (Hint: Use the ladder operators, S -S, iS, and S_-S-iS,, and show first that s_ | 1,0-ћ /2 | 1.-1)) . Then use these...

  • 2. (25 points). Rabi oscillations. Consider a spin-1/2 particle in a magnetic field B - Bo2 such ...

    2. (25 points). Rabi oscillations. Consider a spin-1/2 particle in a magnetic field B - Bo2 such that the spin eigenstates are split in energy by hwo (let's label the ground state |0) and the excited state |1)). The Hamiltonian for the system is written as hwo Zeeman - _ here and below. ơng,z are the usual Pauli matrices. A second, oscillating field is applied in the transverse plane, giving rise to a time-dependent term in the Hamiltoniain hw Rabi-...

  • 1. Consider a spin-0 particle of mass m and charge q moving in a symmetric three-dimensional harm...

    1. Consider a spin-0 particle of mass m and charge q moving in a symmetric three-dimensional harmonic oscillator potential with natural frequency W.Att-0 an external magnetic field is turned on which is uniform in space but oscillates with temporal frequency W as follows. E(t)-Bo sin(at) At time t>0, the perturbation is turned off. Assuming that the system starts off at t-0 in the ground state, apply time-dependent perturbation theory to estimate the probability that the system ends up in an...

  • Consider the state of a spin-1/2 particle 14) = v1o (31+z) + i] – z)) where...

    Consider the state of a spin-1/2 particle 14) = v1o (31+z) + i] – z)) where | z) are the eigenstates of the operator of the spin z-component $z. 1. Show that [V) is properly normalized, i.e. (W14) = 1. 2. Calculate the probability that a measurement of $x = 6x yields 3. Calculate the expectation value (Šx) for the state 14) and its dispersion ASx = V(@z) – ($()2. 4. Assume that the spin is placed in the magnetic...

  • For a charged particle (with charge e) in an electromagnetic field the Hamiltonian can be written...

    For a charged particle (with charge e) in an electromagnetic field the Hamiltonian can be written as: 1 e H (inő A) +eº (2) 2m where A is the vector potential and o is the scalar potential of the field. a) Find the form of the operator for the velocity, v, of a charged particle in an electromagnetic field. Hint: try working this out for a single component (say the x-component) and then generalize. b) Is the velocity a simultaneous...

  • 1. The aim of this problem set is to understand the dynamics of a spin-1/2 system...

    1. The aim of this problem set is to understand the dynamics of a spin-1/2 system in its full glory. Note that formally a spin-1/2 system and a qubit are equivalent hence, all what you will discover in this problem set will carry over to single qubits. Consider an electron spin (spin 1/2, magnetic moment gHB) interacting with a strong magnetic field Bo (0,0, B) in the z direction as well as with a much weaker magnetic field Brf =...

  • Problem 111.3. A spin 1/2 particle interacts with a nnagnetic field B = Boe through the...

    Problem 111.3. A spin 1/2 particle interacts with a nnagnetic field B = Boe through the Pauli interaction H-μσ. B where μ is the magnetic moment. The Pauli spin matrices are İ-(Oz,@yMwwhere the σί are T0 1 0-il The eigenstates for d, are the spinors 0 (a) (3 pts.) Suppose that at time t-0 the particle is in an eigenstate Xx corresponding to spin pointing along the positive z-axis. Find the eigenstatexz in terms of α and β. (b) (7...

  • (10 points) A spin-1/2 particle is originally in the ground state of the Hamiltonian Ho woS...

    (10 points) A spin-1/2 particle is originally in the ground state of the Hamiltonian Ho woS At time t - 0 the system is perturbed by Here and above s, are the spin matrices. Consider H, as a small perturbation of Ho i.e., ao > wi, Find the probability for the particle to flip its spin under the perturbation at t n oo.

  • 3. The Pauli Hamiltonian The Hamiltonian of an electron of mass m, charge q, spinn σ(ox,...

    3. The Pauli Hamiltonian The Hamiltonian of an electron of mass m, charge q, spinn σ(ox, σ" σ Pauli matrices), placed in an electromagnetic field described by the vector poten tial A(r, /) and the scalar potential U(r, /). is written: qh 2m The last term represents the interaction between the spin magnetic moment _ơ and the magnetic field B(R, ) - Vx A(R. 1). also be written in the following form ("the Pauli Hamiltonian"): Show, using the properties of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT