Question

A grad student is trying to build a velocity selector, shown below.


A grad student is trying to build a velocity selector, shown below. Charged particles will enter the velocity selector from the bottom and only those with the correct velocity v will be able to move in a straight line and leave at the top. The grad student's velocity selector has the electric field E pointing to the left, and the magnetic field B is pointing into the page. Explain why this arrangement will not work as a velocity selector.

image.png

2 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A grad student is trying to build a velocity selector, shown below.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Velocity Selector-multiple choice

    The Velocity SelectorIn experiments where all the charged particles in a beam are required to have the same velocity (for example, when entering a mass spectrometer), scientists use a velocity selector. A velocity selector has a region of uniform electric and magnetic fields that are perpendicular to each other and perpendicular to the motion of the charged particles. Both the electric and magnetic fields exert a force on the charged particles. If a particle has precisely the right velocity, the...

  • A velocity selector is used in accelerator mass spectrometry to select particles based on their speed.

    A velocity selector is used in accelerator mass spectrometry to select particles based on their speed. The velocity selector is composed of orthogonal electric and magnetic fields, such that particles with the correct charge to mass ratio and speed will be unaffected, and other particles will be deflected. If the Electric Field is oriented down, What is the direction of the Magnetic Field? A charged particle moves through the velocity selector at a constant speed in a straight line. The electric field...

  • A charged particle moves through a velocity selector at a constant speed in a straight line....

    A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 3.20×10^3 N/C, while the magnetic field is 0.250 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 4.60 cm. Find the charge-to-mass ratio of the particle.

  • Problem 1a: Velocity Selector: Show that with the right ratio of electric to magnetic field strength...

    Problem 1a: Velocity Selector: Show that with the right ratio of electric to magnetic field strength a particle of velocity v will proceed through both fields in a straight line at constant speed (hint: you will need an equation containing v. Also: what does the straight line at constant speed give you?). Assume that the angle of the velocity vector relative to the magnetic field vector is 90 degrees. (15 points) b: Show mathematically that the charge magnitude and sign...

  • is a velocity selector that can beused to measure the speed of a charged particle....

    is a velocity selector that can be used to measure the speed of a charged particle. A beam of particles is directed along the axis of the instrument. A parallel plate capacitor sets up an electric field E which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by 8 mm and the value of the magnetic field is 0.2 T, what voltage between the plates will allow particles of speed to pass straight through...

  • A velocity selector has its electric field directed vertically downward, with magnitude 130 N/C . Find...

    A velocity selector has its electric field directed vertically downward, with magnitude 130 N/C . Find the magnitude of the horizontal magnetic field required to select charged particles moving at 340 m/s . This velocity selector is being used on protons. Compute explicitly the magnitude of the electric force. Compute explicitly the magnitude of the magnetic force. (I have entered the answer with Newtons as the units and it is saying "Enter your answer using dimensions of magnetic flux density."...

  • Please answer quickly, will upvote immediately! A charged particle moves through a velocity selector at a...

    Please answer quickly, will upvote immediately! A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 3.56E+3 N/C, while the magnetic field is 0.332 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 4.58 cm. Calculate the charge-to-mass ratio of the particle. Submit Answer Tries 0/10

  • a) A charged particle moves through a velocity selector at a constant speed in a straight...

    a) A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity selector is 4070 N/C, while the magnetic field is 0.344 T. When the electric field is turned off, the charged particle travels on a circular path whose radius is 6.06 cm. Find the charge-to-mass ratio of the particle. b) The 1600-turn coil in a dc motor has an area per turn of 2.3 × 10-2 m2. The...

  • If you were building a velocity selector where the electric field pointed along the upward direction...

    If you were building a velocity selector where the electric field pointed along the upward direction and a positively charged particle was traveling left to right; a.) Would you rather the magnetic field go into or out of the page. Explain. b.) Show that the veloicty will not be deflected. v=E/B c.) Would your answer to part A change if the charge was negative. Explain.

  • The figure below shows the schematic for a mass spectrometer which consists of a velocity selector...

    The figure below shows the schematic for a mass spectrometer which consists of a velocity selector and a deflection chamber. The magnitude of the magnetic field in both the velocity selector and the deflection chamber is 0.0110 T, and the electric field between the plates of the velocity selector is 1600 V/m. If a singly charged ion with a mass of 6.70 times 10^-27 kg travels through the velocity selector and into the deflection chamber, determine the radius of its...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT