Question

A 190-kg rugby player running east with a speed of 4.00 m/s tackles a 99.0-kg opponent running north with a speed of 3.90 m/s. Assume the tackle is a perfectly inelastic collision. (Assume that the +x axis points towards the east and the +y axis points towards the north.)

(a) What is the velocity of the players immediately after the tackle?

magnitude     m/s
direction ° counterclockwise from the +x axis


(b) What is the amount of mechanical energy lost during the collision?A 190-kg rugby player running east with a speed of 4.00 m/s tackles a 99.0-kg opponent running north with a speed of 3.90 m/s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

By momentum conservation mitt mer = (mitme) m = 190ky v = timis m2 = 9919 2 = 3.gj mis ū = (190X41) + (99x3.9 ) 289 T = 2.631

Add a comment
Know the answer?
Add Answer to:
A 190-kg rugby player running east with a speed of 4.00 m/s tackles a 99.0-kg opponent...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 135-kg rugby player running east with a speed of 4.00 m/s tackles a 92.5-kg opponent...

    A 135-kg rugby player running east with a speed of 4.00 m/s tackles a 92.5-kg opponent running north with a speed of 4.4 m/s. Assume the tackle is a perfectly inelastic collision. (Assume that the +x-axis points towards the east and the +y-axis points towards the north.) I got the answer to part A: (a) What is the velocity of the players immediately after the tackle? magnitude 2.97 m/s direction 37 degrees counterclockwise from the +x-axis I don't understand how...

  • A 75.0-kg fullback running east with a speed of 4.00 m/s is tackled by a 91.0-kg...

    A 75.0-kg fullback running east with a speed of 4.00 m/s is tackled by a 91.0-kg opponent running north with a speed of 3.00 m/s. (a) Why does the tackle constitute a perfectly inelastic collision? (b) Calculate the velocity of the players immediately after the tackle. magnitude direction (c) Determine the mechanical energy that is lost as a result of the collision. (d) Where did the lost energy go?

  • A 77.0-kg fullback running east with a speed of 5.40 m/s is tackled by a 79.0-kg...

    A 77.0-kg fullback running east with a speed of 5.40 m/s is tackled by a 79.0-kg opponent running north with a speed of 3.00 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. ___________________ (b) Calculate the velocity of the players immediately after the tackle. magnitude=_____ m/s direction=______ ° north of east (c) Determine the mechanical energy that disappears as a result of the collision. _______ J Account for the missing energy. _________________

  • A 75.0-kg fullback running east with a speed of 4.80 m/s is tackled by a 97.0-kg...

    A 75.0-kg fullback running east with a speed of 4.80 m/s is tackled by a 97.0-kg opponent running north with a speed of 3.00 m/s. (a) Why does the tackle constitute a perfectly inelastic collision? This answer has not been graded yet. (b) Calculate the velocity of the players immediately after the tackle. magnitude direction m/s o north of east (c) Determine the mechanical energy that is lost as a result of the collision. (d) Where did the lost energy...

  • A 79 kg fullback running east with a speed of 5.4 m/s is tackled by a...

    A 79 kg fullback running east with a speed of 5.4 m/s is tackled by a 83 kg opponent running north with a speed of 3 m/s. A) calculate the velocity of the players immediately after the tackle. B) determine the mechanical energy that is lost as a result of the collision. C) where did the lost energy go? Problem 5: A 79.0-kg fullback running east with a speed of 5.40 m/s is tackled by a 83.0-kg opponent running north...

  • (non calculus physics) A college fullback weighing 100 kg is running north at a speed of...

    (non calculus physics) A college fullback weighing 100 kg is running north at a speed of 4.5 m/s when he is tackled by a 110 kg linebacker running east at 3.5 m/s. Assume the collision is perfectly inelastic. Find the velocity of the players just after the tackle. Find the kinetic energy lost as a result of the collision. How do you account for this apparently “lost” energy?

  • Calculate the final speed (in m/s) of a 114 kg rugby player who is initially running...

    Calculate the final speed (in m/s) of a 114 kg rugby player who is initially running at 7.25 m/s but collides head-on with a padded goalpost and experiences a backward force of 1.75 ✕ 104 N for 6.50 ✕ 10−2 s.

  • A 102.5-kg rugby player is initially running at 9.5 m/s in the positive direction, but collides...

    A 102.5-kg rugby player is initially running at 9.5 m/s in the positive direction, but collides head-on with a padded goalpost and experiences a backward force of 1.73 × 104 N for 5.4 × 10–2 s. Calculate the final velocity in the horizontal direction of the rugby player, in meters per second.

  • Football Collision A 96 kg running back, moving at 5.29 m/s, runs into a 109 kg...

    Football Collision A 96 kg running back, moving at 5.29 m/s, runs into a 109 kg defender who is initially at rest. What is the speed of the players just after their perfectly inelastic collision? Incorrect. What is the change in their total kinetic energy due to this totally inelastic collision?

  • A 100-kg football linebacker moving at 2.5 m/s tackles head-on an 80-kg halfback running 3.0 m/s....

    A 100-kg football linebacker moving at 2.5 m/s tackles head-on an 80-kg halfback running 3.0 m/s. Neglecting the effects due to digging in of the cleats, (a) the halfback will drive the linebacker backward (b) neither player will drive the other backward (c) the linebacker will drive the halfback backward (d) this is a simple example of an elastic collision

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT