Question

Problem 10.22 Consider the transmission line shown, with series impedance ZL. negligible shunt admittance, and a load impedan

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Problem 10.22 Consider the transmission line shown, with series impedance ZL. negligible shunt admittance, and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Given a 3-transmission line with a series impedance z 0.17+ jo.79 2/mile, and a shunt admittance...

    Given a 3-transmission line with a series impedance z 0.17+ jo.79 2/mile, and a shunt admittance y j2.10*mile The line is 150 mile long, and delivers to the load (receiving-end) 15 MW at 132 kV, at a power factor PF1. Assume medium length line, and calculate the power angle 012 between the sending-end voltage and the receiving-end voltage.

  • Q2. Draw the nominal π circuit that is used to represent the medium-length transmission line model with total series impedance Z and total shunt admittance Y. Then derive the equations to express the...

    Q2. Draw the nominal π circuit that is used to represent the medium-length transmission line model with total series impedance Z and total shunt admittance Y. Then derive the equations to express the ABCD parameters (a) 20% (b)A 200 km, 230 kV, 50 Hz three-phase overhead transmission line has a positive-sequence series impedance z (0.08 + j0.48) Ω/km, and a positive-sequence shunt admittance y-j3.33 x 10T° S/km. At full load, the line delivers 250 MW at 0.99 power factor lagging...

  • A three-phase transmission line is 200 km long. lt has a total series impedance of 25+j110)Ω...

    A three-phase transmission line is 200 km long. lt has a total series impedance of 25+j110)Ω Per Phase and a total shunt admittance ofj5x 10 Ω. It delivers 180 MW at 275 kV and 0.8 power factor lagging to a load connected at the receiving end. Using the medium π model of the line, determine the voltage, current, real power, reactive power and power factor at the sending end of the line.

  • A 230kV three phase transmission line has a per phase series impedance of z=0.05+j0.45ohms per km...

    A 230kV three phase transmission line has a per phase series impedance of z=0.05+j0.45ohms per km and a per phase shunt admittance of y= j3.4x10^-6 siemens per km. The line is 80km long. Using the medium line pi model: (a) Determine the transmission line model constants A, B, C, and D (b) Find the sending end (generating) voltage, current and power when the line delivers to a load of 1. 200 MVA with 0.8 lagging power factor at 220 kV...

  • Problem 2: A 345 kV, 60 Hz, three-phase characteristic parameters of the transmission line are: transmission...

    Problem 2: A 345 kV, 60 Hz, three-phase characteristic parameters of the transmission line are: transmission line is 130 km long. The r= 0.036 ?/km L = 0.8 x 10-3 H/km C = 0.0112 x 10-6 F/km The receiving end load is 270 MVA with 0.8 PF lagging at 325 kV. (k) What is the total series impedance of this transmission line? (5 points) () What is the total shunt admittance of this transmission line? (5 points) (m) Calculate the...

  • Show the solution for the following problem 1. A short, 230 kV transmission line has an...

    Show the solution for the following problem 1. A short, 230 kV transmission line has an impedance of 5 cis 78 ohms. The load at the receiving end is 100 MW at 230 kV, 85% lagging power factor. What is the voltage at the sending end? a. 235.43 kV b. 226.3 kV c. 231.78 kV d. 238.21 kV 2. A 66 kv medium length transmission line delivers a load of 10 MW at 66 kv and 80% lagging P.F. the...

  • PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase ...

    PROBLEM: A 230-kV, 50 Hz, three-phase transmission line is 120 km long. The line has a per phase series impedance of z-0.05 +j0.45 Ω per km, and a per phase shunt admittance of y 3.4x10-6 Siemens per km. The line delivers (at the receiving end) 200 MVA, 0.8 lagging power factor at 220 kV. Now consider two cases: A- Assume that shunt parameters of the transmission line are ignored (i.e. even if this is a medium length transmission line, under...

  • power system A single-circuit 60-Hz high voltage power transmission line is 370 km (230 mi) long....

    power system A single-circuit 60-Hz high voltage power transmission line is 370 km (230 mi) long. The conductors are Rook with flat horizontal configuration and 7.25 ms=(23.8 ft.) conductor spacing. The load on the line is 125 MW at 100% power factor. Use attached Tables A3 to A3to determine; The sending end voltage Vs The sending end current Is The sending end power Ps The percentage voltage regulation The transmission efficiency Given that Ds for the Rook conductor is 0.0327...

  • The six-bus system shown in Figure 1 will be simulated using MATLAB. Transmission line data and b...

    The six-bus system shown in Figure 1 will be simulated using MATLAB. Transmission line data and bus data are given in Tables 1 and 2 respectively. The transmission line data are calculated on 100 MVA base and 230 (line-to-line) kV base for generator. Tasks: 1. Determine the network admittance matrix Y 2. Find the load flow solution using Gauss-Seidel/Newton Raphson method until first iteration by manual calculation. Use Maltab software to solve power flow problem using Gauss-Seidel method. Find the...

  • I need help to solve this questions about Generator Governor Droop and Transmission Line. A complete...

    I need help to solve this questions about Generator Governor Droop and Transmission Line. A complete solutions with answers would be great. Thank you Generation Question 1 to 5 relate to the following grid connected generator. A governor-controlled, steam-driven 450 MW synchronous generator with 5% droop is synchronized to the 60 Hz grid and its load set-point adjusted to deliver 300 MW to the grid. Q1. (a) 000 What is the actual droop of the generating unit? 0.0225 Hz/MW (b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT