Question

NAME: [1.) (20 pts) (Work-Energy Theorem) A 67.0 kg skier on a horizontal patch of snow skiing at an initial speed of 11.0 m/
0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) M = 67 kg Inital speed Vi= 11ms S - 177m distance travelled Using work change ink. E energy theorem, wordone -) W- fm (-v

Add a comment
Know the answer?
Add Answer to:
NAME: [1.) (20 pts) (Work-Energy Theorem) A 67.0 kg skier on a horizontal patch of snow...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • physics with calculus problem A skier is standing motionless on a horizontal patch of snow. She...

    physics with calculus problem A skier is standing motionless on a horizontal patch of snow. She is holding onto a horizontal tow rope, which is about to pull her forward. The skier's mass is 47 kg, and the coefficient of static friction between the skis and snow is 0.1. What is the magnitude of the maximum force that the tow rope can apply to the skier without causing her to move?

  • Question 1 1 pts A snow skier is racing directly downhill on snow with a kinetic...

    Question 1 1 pts A snow skier is racing directly downhill on snow with a kinetic friction coefficient (between the snow and the skis) of 0.05. The angle of the slope is 40 degrees. The mass of the skier and ski equipment is 78 kg, the skier's cross-sectional area (in a "tucked" position) is 1.4 m2, the drag coefficient with respect to the air is 0.14 and the air's density Pair =1.21 kg/m3. What is the skier's terminal speed going...

  • 12. A 62 kg skier is moving at 6.5 m/s on frictionless horizontal snow-covered plateau when...

    12. A 62 kg skier is moving at 6.5 m/s on frictionless horizontal snow-covered plateau when she encounters a rough patch 3.50 m long. The coefficient of kinetic friction between this patch and her skis is 0.30. After crossing the rough patch and returning to friction free snow, she skis down an icy frictionless hell 2.5 m high. A) How much work is done by friction in crossing the patch? B) How fast is the skier moving when she gets...

  • A 62.0 kg skier is moving at 6.50 m/s on a frictionless, horizontal snow covered plateau when she encounters a rough patch 3.50 m long

    A 62.0 kg skier is moving at 6.50 m/s on a frictionless, horizontal snow covered plateau when she encounters a rough patch 3.50 m long. The coefficient of kinetic friction between this patch and returning to friction-free snow, she skis down an icy, frictionless hill 2.50 m high. (a) How fast is the skier moving when she gets to the bottom of the hill? (b) How much internal energy was generated in crossing the rough patch?

  • Learning Goal: To practice Problem-Solving Strategy 7.1 Work and kinetic energy. (Figure 1)Marjan, a skier of...

    Learning Goal: To practice Problem-Solving Strategy 7.1 Work and kinetic energy. (Figure 1)Marjan, a skier of mass m, coasts a distance son level snow to a stop from a speed of v, as depicted in the figure. Use the work-energy principle to find the coefficient of kinetic friction ?k between the skis and the snow. What is the net force on the skier in the x direction? Enter an expression for the net force in terms of some or all...

  • A 72.5-kg skier coasts up a snow-covered hill that makes an angle of 22.9 ° with...

    A 72.5-kg skier coasts up a snow-covered hill that makes an angle of 22.9 ° with the horizontal. The initial speed of the skier is 8.71 m/s. After coasting a distance of 1.19 m up the slope, the speed of the skier is 3.74 m/s. (a) Find the work done by the kinetic frictional force that acts on the skis. (b) What is the magnitude of the kinetic frictional force?

  • A skier going down a slope of angle θ below the horizontal is opposed by a...

    A skier going down a slope of angle θ below the horizontal is opposed by a turbulent drag force that the air exerts on the skier and by a kinetic friction force that the snow exerts on the skier. The mass of the skier is m. Determine the terminal speed assuming that the coefficient of kinetic friction between the skis and the snow is μ, the density of air is ρ, the skier's frontal area is A, and the drag...

  • A 63.0–kg skier with an initial speed of 12.2 m/s coasts up a 33.0° incline to...

    A 63.0–kg skier with an initial speed of 12.2 m/s coasts up a 33.0° incline to a rise of 2.64–m as shown in figure below. Find her final speed at the top, given that the coefficient of friction between her skis and the snow is 0.0760. (Hint: Find the distance traveled up the incline assuming a straight-line path as shown in the figure.) The skier’s initial kinetic energy is partially used in coasting to the top of a rise.

  • A skier, starting from rest, coasts down a slope that makes a 25.0o angle with the...

    A skier, starting from rest, coasts down a slope that makes a 25.0o angle with the horizontal. The coefficient of kinetic friction between the snow and the skis is 0.200. The skier travels along the slope a distance of 11.4 m before skiing off the edge of a cliff. The skier falls a vertical distance of 3.80 m before landing on another downhill slope. Determine the speed with which the skier lands.

  • A 55.0 kg skier with an initial speed of 11.0 m/s coasts up a 2.50 m...

    A 55.0 kg skier with an initial speed of 11.0 m/s coasts up a 2.50 m high rise as shown in the following figure. Vi = ? KE 2.5 m / 35° Find her final speed at the top (in m/s), given that the coefficient of friction between her skis and the snow is 0.0800. (Hint: Find the distance traveled up the incline assuming a straight-line path as shown in the figure.) m/s

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT