Question

For a beam of rectangular cross section, height b, depth d, is simply supported (by pin joints at each end) over a span of length L and carries a point load W at mid span. Determine the distribution and maximum value of the normal stress.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
For a beam of rectangular cross section, height b, depth d, is simply supported (by pin...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A simply supported wood beam of rectangular cross section and span length 2 m carries a...

    A simply supported wood beam of rectangular cross section and span length 2 m carries a uniformly distributed load of intensity 9 = 1 kN/m as shown. Calculate the maximum bending stress and the maximum shear stress in the beam. 

  • The beam has the rectangular cross section shown. A beam of length 6 meters pin-supported 2...

    The beam has the rectangular cross section shown. A beam of length 6 meters pin-supported 2 meters from the left end and roller-supported 2 meters from the right end. The beam has a rectangular cross section with base length 50 millimeters and height 150 millimeters. Load: w, uniform along beam. Part A If w = 4 kN/m , determine the maximum bending stress in the beam. Can you please draw out the moment and shear diagrams for this one using...

  • A rectangular cross section at a location along a beam in bending is

    (a). A rectangular cross section at a location along a beam in bending is acted upon by a bending moment and a shear force. The cross section is \(120 \mathrm{~mm}\) wide, \(300 \mathrm{~mm}\) deep and is orientated such that it is in bending about its major axis of bending. The magnitudes of the bending moment and shear force are \(315 \mathrm{kNm}\) and \(240 \mathrm{kN}\) respectively. Determine the maximum bending and shear stresses on the cross section. Plot the bending and...

  • A simply supported wood beam AB with span length L = 6 m

    A simply supported wood beam AB with span length L = 6 m carries a trapezoidal distributed load of intensity q = 4 kN/m at the left end and q/2 at the right end. Calculate the maximum bending stress Omax due to the load if the beam has a rectangular cross section with width b = 150 mm and height h = 250 mm. 

  • CA) 1 in 2 in Fig. 1a Fig. 1b Cross-section Problem. 1. A simply supported beam...

    CA) 1 in 2 in Fig. 1a Fig. 1b Cross-section Problem. 1. A simply supported beam of length L = 10 ft has a rectangular cross-section, with a height of 2 inches and a width of 1 inch. The bending stresses should not exceed 50 ksi. a) What is the largest allowable point load P that can be applied at the mid-span (i.e. in the middle of the beam)? b) What is the largest allowable constant distributed load that can...

  • 1.2 (20 Marks) A beam of rectangular cross section (width b and height h) supports a...

    1.2 (20 Marks) A beam of rectangular cross section (width b and height h) supports a uniformly distributed load along its entire length L. The allowable stresses in bending and shear are all and Tallow, respectively. a) If the beam is simply supported, what is the span length Lo below which the shear stress governs the allowable load and above which the bending stress governs? b) If the beam is supported as a cantilever, what is the length Lo below...

  • A beam of rectangular cross section 200 mm deep and 100 mm wide. If the beam...

    A beam of rectangular cross section 200 mm deep and 100 mm wide. If the beam is 3m long, simply supported at either end and carries point loads as shown in FIGURE 2 (on page 4). 2. SAN 1OAN R, FR 100mm FIG.2 (a) Calculate the maximum bending moment (b) Calculate the maximum stress in the beam (c) At the point of maximum stress sketch a graph of the stress distribution through the thickness of the beam, indicating which are...

  • A Simply supported wood beam AB with span length Labm Carries trapezoidal distributed load of eatersita...

    A Simply supported wood beam AB with span length Labm Carries trapezoidal distributed load of eatersita q=vikula at the best and and at the right end. calculate the maximum bending stress Tomax clue to the load of the beam has a rectangular sechan with width 6=150mm and 9/2 Cross height ho 850mm. a

  • Load: q=100lb/in BP1: Determine normal and transverse shear stress on a simply supported rectangular 5-ft beam...

    Load: q=100lb/in BP1: Determine normal and transverse shear stress on a simply supported rectangular 5-ft beam with a cross-sectional height of 5" and beam depth of 1" at a point 4' from left and one inch from the top.

  • The flexural strength of a simply supported prismatic beam with depth ‘d’, width ‘b’ and span...

    The flexural strength of a simply supported prismatic beam with depth ‘d’, width ‘b’ and span ‘L’ is determined using a four-point bending test. Two equal loads of value ‘P’ are placed at a distance of L/3 and 2L/3 from the support. a. Calculate the reaction forces at the supports. b. Draw the shear and moment diagrams for the beam. c. What is the location of the maximum moment on the beam? What is the value of the maximum moment?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT