Question

The flexural strength of a simply supported prismatic beam with depth ‘d’, width ‘b’ and span...

The flexural strength of a simply supported prismatic beam with depth ‘d’, width ‘b’ and span ‘L’ is determined using a four-point bending test. Two equal loads of value ‘P’ are placed at a distance of L/3 and 2L/3 from the support.

a. Calculate the reaction forces at the supports.

b. Draw the shear and moment diagrams for the beam.

c. What is the location of the maximum moment on the beam? What is the value of the maximum moment?

d. What is the location of the maximum shear on the beam? What is the value of the maximum shear?

e. Derive the expression for the maximum bending stress on the beam.

f. Derive the expression for the maximum bending stress if the beam has a solid circular cross-section of radius ‘r’.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The flexural strength of a simply supported prismatic beam with depth ‘d’, width ‘b’ and span...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A prismatic beam with span L = 3 ft is simply supported at points A and...

    A prismatic beam with span L = 3 ft is simply supported at points A and B. The beam is supporting a uniform load with q = 160 lb/in . The cross-section of the beam is a solid rectangle with width b = 1 in and height h = 4 in . Determine: a. The normal stress (σ C ) and shear stress (τ C ) at point C located 8 inches left of support B and 1 in. below...

  • A simply supported beam has a span of 10 ft, a depth of 18 in., and...

    A simply supported beam has a span of 10 ft, a depth of 18 in., and a width of 12 in. The beam is concrete with f'c = 4000 psi. Find the maximum factored load that this beam can support. Also check the shear capacity and flexural capacity.

  • Shear force and bending moments of the beam. For the simply supported beam subjected to the...

    Shear force and bending moments of the beam. For the simply supported beam subjected to the loading shown in Figure P7.8 derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) plot the shear-force and bending-moment diagrams for the beam, using the derived functions. report the maximum positive bending moment, the maximum negative bending moment, and their respective locations.

  • 3. A simply-supported prismatic long beam KL is pushed upward with P 160 N at point...

    3. A simply-supported prismatic long beam KL is pushed upward with P 160 N at point N as illustrated. Please do the followings: (a) Determine the reaction forces at points K and L, respectively including their directions and magnitude and units; (b) Draw the shear diagram (V vs. x) and bending diagram is obtained step-by-step including the mathematical equations of the shear and bending moment curves, and the critical values, transition points, and slopes should be labelled clearly in numerical...

  • 2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft...

    2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft over the entire span. The beam and cross section are shown below. Draw the shear and moment diagrams, find the neutral axis location, moment of inertia of the composite section, the maximum bending stress on the cross section. (40 points) 10" 2 k/ft 1-3" 30'-0"

  • A simply supported wood beam with a span of L = 16 ft supports a uniformly...

    A simply supported wood beam with a span of L = 16 ft supports a uniformly distributed load of w0 = 305 lb/ft. The allowable bending stress of the wood is 1.30 ksi. If the aspect ratio of the solid rectangular wood beam is specified as h/b = 1.75, calculate the minimum width b that can be used for the beam. A simply supported wood beam with a span of L = 16 ft supports a uniformly distributed load of...

  • The beam is simply supported. Problem 3. (30 points) A wooden beam is composed of a...

    The beam is simply supported. Problem 3. (30 points) A wooden beam is composed of a 2 x8" (1.5"x7.25") top flange and a 3"x10 (2.5"x9.25") web to form a T section. Assume that the two members are glued together. L-16 ft. (a) For a uniform dead load of 20 lb/ft over the entire beam span and a uniform live load of 80 lb/ft over the left half of the span, draw the shear and moment diagrams. (b) Determine the cross-sectional...

  • A 5-m-long simply supported timber beam carries two concentrated loads as shown dimensions of the beam...

    A 5-m-long simply supported timber beam carries two concentrated loads as shown dimensions of the beam are shown a) At section a-a e the magnitude of the shear stress in the beam at point H. -7748 KNIm in the beam at point K the beam, at any location within the 5-m span length. V occurs in the beam at any location within the 5-m span length.)diagr. the magnitude of the shear stress (b) At section a-a, (e) Determine the maximum...

  • 1. For the simply supported beam subjected to the loading shown, Derive equations for the shear...

    1. For the simply supported beam subjected to the loading shown, Derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) a. b. Plot the shear-force and bending-moment diagrams for the beam using the derived functions c. Report the maximum bending moment and its location. 42 kips 6 kips/ft 10 ft 20 ft

  • A simply supported prismatic beam is loaded with a load applied at an angle at point...

    A simply supported prismatic beam is loaded with a load applied at an angle at point F as shown below The beams connecting points CE and EF can be considered rigid (l-very large). The magnitude of the applied load P is 75kN. NOTE: You must use your student number to calculate the magnitude of the angle, α, and the length EF using the expressions below. The angle, α, is given in degrees and the unit for length EF is m...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT