Question

min The grand canonical partition function ofan ideal gas is 3ega with q-( and λ-e.kr. Derive the entropy, pressure, number

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Partition unchion 乙-e Taro P,点 aktn k T 31h 1-僻广v λ.emp Interna 1 Energ U-einz 23 ne op Dif e renthoing we get, nternal En 3speatie heat or Heatapaiy ST 2 /r 3h

Fe Helmhottz free eney O T Sh KTL 2. (Prtssure) 3/h 2. k. Mumber of Park des KT o of parhete)

Add a comment
Know the answer?
Add Answer to:
min The grand canonical partition function ofan ideal gas is 3ega with q-( and λ-e".kr. Derive...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. It can be shown that the canonical partition function of an N-particle monatomic ideal gas con...

    Please be specific about the solution and thank you so much! 3. It can be shown that the canonical partition function of an N-particle monatomic ideal gas confined to a container of volume V at temperature T is given by 3 Use this partition function to derive an expression for the average energy and the constant- volume heat capacity of the monatomic ideal gas. Note that in classical thermodynamics these quantities were simply given. Your calculations show that these quantities...

  • 1. Quick Exercises (a) In lecture 15, we showed that the canonical partition function, Q, is...

    1. Quick Exercises (a) In lecture 15, we showed that the canonical partition function, Q, is related to the Helmholz free energy: A = -kTinQ. Using the fundamental thermo- dynamic relation of Helmheltz free energy i.e. dA = -SAT - PDV + pdN), express P, and p in terms of Q. (b) The canonical partition function for N non-interacting, indistinguishable parti- cles in volume V at temperature T is given by Q(N,V,T) = where where q(V.T) is the partition function...

  • Pls show full working thank you Problem 4.1 Ideal gas equation of state from the Grand...

    Pls show full working thank you Problem 4.1 Ideal gas equation of state from the Grand potential The Grand Canonical ensemble can make some calculations particularly simple. To derive the ideal gas equation of state, we first note that the canonical partition function of a set of N identical and indistinguishable particles is given by Z-z/N! , where z is the single particle partition function in the canonical ensemble a) Show that the Grand Canonical partition function is -žte®)" b...

  • Pb2. Consider the case of a canonical ensemble of N gas particles confined to a t...

    Pb2. Consider the case of a canonical ensemble of N gas particles confined to a t rectangular parallelepiped of lengths: a, b, and c. The energy, which is the translational kinetic energy, is given by: o a where h is the Planck's constant, m the mass of the particle, and nx, ny ,nz are integer numbers running from 1 to +oo, (a) Calculate the canonical partition function, qi, for one particle by considering an integral approach for the calculation of...

  • 1. Quick Exercises (a) In lecture 15, we showed that the canonical partition function, Q, is related to the Helmhol...

    1. Quick Exercises (a) In lecture 15, we showed that the canonical partition function, Q, is related to the Helmholz free energy: A = -kTinQ. Using the fundamental thermo- dynamic relation of Helmheltz free energy (i.e. dA = -SIT - PdV + pdN), express P, and u in terms of Q. (b) The canonical partition function for N non-interacting, indistinguishable parti- cles in volume V at temperature T is given by Q(N, V,T) = where where 9(V, T) is the...

  • 1. Quick Exercises (a) In lecture 15, we showed that the canonical partition function, Q, is related to the Helmholz fr...

    1. Quick Exercises (a) In lecture 15, we showed that the canonical partition function, Q, is related to the Helmholz free energy: A = -kTinQ. Using the fundamental thermo- dynamic relation of Helmheltz free energy i.e. dA = -SAT - PDV + udN), express P, and u in terms of Q. (b) The canonical partition function for N non-interacting, indistinguishable parti- cles in volume V at temperature T is given by ON Q(N,V,T) = where where q(VT) is the partition...

  • 1. Show that for a classical ideal gas, Q1 alnQ1 NK Hint: Start with the partition function for t...

    1. Show that for a classical ideal gas, Q1 alnQ1 NK Hint: Start with the partition function for the classical ideal gas ( Q1) and use above equation to find the value of right-hand side and compare with the value of r we derive in the class. (Recall entropy you derived for classical gas) NK Making use of the fact that the Helmholtz free energy A (N, V, T) of a thermodynamic system is an extensive property of the system....

  • 1. Compute the following quantities for a system with 1.0 mol of Kr at 298 K...

    1. Compute the following quantities for a system with 1.0 mol of Kr at 298 K and 1.0 atm. For this problem, assume that Kr is ideal gas (indistinguishable particles) and electronic contribution to the partition function can be ignored. For part (b)-(d). clearly indicate how each quantitiy is related to the partition function, Q. (a) Single-particle partition function, q. (b) Helmholtz free energy, A. (c) Average energy of the system, (E). (d) Entropy, S. (e) Constant volume heat capacity,...

  • 2) Next week, we will show that the partition function for a monatomic ideal gas is given by Q(N,V,T) - 1 ( 2mk,T 30/2...

    2) Next week, we will show that the partition function for a monatomic ideal gas is given by Q(N,V,T) - 1 ( 2mk,T 30/2 ? N 422) VN where m is the mass of the gas molecules and h is Planck's constant. Derive expressions for the pressure and energy from this partition function.

  • Problem C The partition function for an ideal gas is given by integrating over all possible...

    Problem C The partition function for an ideal gas is given by integrating over all possible position and momen- tum configurations, weighted by a Boltzmann factor, for each particle (6 integrals per particle over z, v, z, pz, py, pz _ each running from-oo to +oo) and multiplying all N of these together (the factor of h is included to cancel the dimensions of dpdr; the factor of N! is included to divide out the multiplicity of particle-particle exchange) a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT