Question

Blocks A (mass 2kg), B(mass 5 kg), and C (mass 15 kg) are connected by two cables as shown. The system is released from rest. First show that the blocks will move (hint: right at the limit of static equilibrium, A is about to move up, B to the right, and Cdown), then find the acceleration of the blocks and the tensions in the cables. The coefficient of static and kinetic friction between block B and the surface are both 0.3
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Blocks A (mass 2kg), B(mass 5 kg), and C (mass 15 kg) are connected by two...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks are connected over a pulley. Block A is on a 30 degree incline and...

    Two blocks are connected over a pulley. Block A is on a 30 degree incline and block b is hanging in the air. Block A has a mass of 40.0 kg, a coefficient of kinetic friction of 0.300 and a coefficient of static friction or 0.400. Block B has a mass of 130.0 Kg Draw a freebody diagram What is the value of static friction? What is the value of kinetic friction? will the blocks move? If so, which way...

  • Two blocks, A and B (with mass 60 kg and 115 kg, respectively), are connected by...

    Two blocks, A and B (with mass 60 kg and 115 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is ur = 0.27. Determine the change in the kinetic energy of block A as it moves from © to D, a distance of 24 m up the incline (and block B drops downward a distance of...

  • Question 1 10 pts Two blocks A and B are connected by a massless string over...

    Question 1 10 pts Two blocks A and B are connected by a massless string over a massless, frictionless pulley, as shown in the figure below. Both blocks are being held in place to prevent motion. Block A has a mass of 3.0 kg. and block B a mass of 10.0 kg. Block A is on top of a horizontal table, with a coefficient of kinetic friction of 0.25. If block B is released and the system is allowed to...

  • Two blocks with equal mass m = 2.1 kg are connected by a string that passes...

    Two blocks with equal mass m = 2.1 kg are connected by a string that passes over a pulley wheel. Block A sits on a level table, with friction acting between the block and ramp surfaces with coefficient of kinetic friction µk = 0.27. Block B is suspended below the pulley wheel, initially at a height h = 1.23 m above the ground. The system is released from rest. What is the final speed of both blocks in units of...

  • In the figure below, two blocks are connected over a pulley. The mass of block A...

    In the figure below, two blocks are connected over a pulley. The mass of block A is 22 kg 3. and the coefficient of kinetic friction between A and the incline is i* =028. The mass of block B is 18 kg. Angle 0 is 30°. The system is prepared at rest but it starts moving as soon as it is released Frictionless massless pulley Assume that The system is subject to the regular force of gravity. The connecting rope...

  • A block of mass m1 = 2.40 kg is connected to a second block of mass...

    A block of mass m1 = 2.40 kg is connected to a second block of mass m2 = 1.80 kg, as shown in the sketch. When the blocks are released from the rest, they move through a distance d = 0.50 m, at which point m2 hits the floor. Given that the coefficient of kinetic friction between m1 and the horizontal surface is Hk 0.450, find the speed of the blocks just т before lands. т2

  • Two masses are connected by a massless rope. The mass of object 1 is 5.5 kg,...

    Two masses are connected by a massless rope. The mass of object 1 is 5.5 kg, and it rests on a surface with a 1.7 coefficient for static friction (us) and a .90 coefficient for kinetic friction (uk). Object 2 has a mass of 8.3 kg and hangs over the edge of the surface by a frictionless, massless pulley. The two objects begin at rest when object 2 is released to hang freely. A.) Draw a free body diagram for...

  • Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg...

    Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg is at rest on a plane inclined at Theta = 35.0 degree above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2 = 26.1 kg. as shown in the figure. The coefficients of static and kinetic friction between block 1 and the inclined plane Is MU_s is unknown. If the blocks are released...

  • A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are...

    A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. These blocks are allowed to move on a fixed block-wedge of angle e 30.0°. The coefficient of kinetic friction is 0.360 for both blocks. Draw free-body diagrams of both blocks and of the pulley. M, R Mig...

  • 3. 35 points Two blocks (m1 = 2kg, m2 = 4kg) are connected over a pulley...

    3. 35 points Two blocks (m1 = 2kg, m2 = 4kg) are connected over a pulley as shown below. The pulley (C=1/2) has mass M = 2kg and radius R = 60cm. The horizontal surface is rough with coefficient of kinetic friction of 0.7. a) [10 points] What is the linear acceleration of blocks? b) (10 points) What is the tension in the rope on either side of the pulley? c) (10 points) Find the magnitude of angular acceleration of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT