Question

An experiment was conducted to test accuracy of a given frequency generator. One end of a...

An experiment was conducted to test accuracy of a given frequency generator. One end of a string was connected to the frequency generator and a hanging mass was attached to the other end of the string, as shown in the Figure. In this experiment, the hanging mass and the wavelength of the standing wave were measured at a certain frequency. The hanging mass and the wavelength were (146.0 ± 0.5) g, and (84.0 ± 0.5) cm, respectively. In addition, the linear density of the string, (6.70 x 10-4 ± 5 x 10-6) kg/m, was known.

a. From the given data above, report the frequency of the standing wave with its uncertainty. Show your work.   
b. The frequency generator read 57 Hz with the uncertainty of 0.5 Hz. Did the frequency reading agree or disagree with the frequency obtained from (a)? Explain your reasoning.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An experiment was conducted to test accuracy of a given frequency generator. One end of a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A standing wave pattern is created on a string with mass density u- 3x 10 kg/m....

    A standing wave pattern is created on a string with mass density u- 3x 10 kg/m. A wave generator with frequency f- 65 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L- 0.74 m. Initially the 3rd harmonic wave pattern is formed. What is the wavelength...

  • Name: - Harmonics Worksheet Wave on a String One end of a string with a linear...

    Name: - Harmonics Worksheet Wave on a String One end of a string with a linear mass density of 1.45 . 10-2 kg/m is tied to a mechanical vibrator that can oscillate up and down. The other end hangs over a pulley 80 cm away. The mass hanging from the free end is 3 kg. The left end is oscillated up and down, which will create a standing wave pattern at certain frequencies. Draw the first five standing wave patterns...

  • In the standing waves experiment, the string has a mass of 38.3 g string and length...

    In the standing waves experiment, the string has a mass of 38.3 g string and length of 0.98 m. The string is connected to a mechanical wave generator that produce standing waves with frequency of f. The other end of the string is connected to a mass holder (mholder = 50.0 g) that carries a weight of 5.00x102 g. Calculate the linear density of the string. I was not given any further information so I assume frequency and wavelength must...

  • A string of length L = 1.2 m is attached at one end to a wave...

    A string of length L = 1.2 m is attached at one end to a wave oscillator, which is vibrating at a frequency f = 80 Hz. The other end of the string is attached to a mass hanging over a pulley as shown in the diagram below. When a particular hanging mass is suspended from the string, a standing wave with two segments is formed. When the weight is reduced by 2.2 kg, a standing wave with five segments...

  • A tube open at one end produces a standing wave with a fundamental frequency of 625...

    A tube open at one end produces a standing wave with a fundamental frequency of 625 Hz when the temperature is -10.0 °C, what is the length of the tube, in meters? b) If we wanted to produce a standing wave with the same fundamental frequency in a string with a length of 1.30 m and a mass of 4.00 g, what would be the tension in the string, in Newtons? a)_____ m b) _____ N

  • Hey! I'm really unsure about all these answers! Could you please check and explain each one?...

    Hey! I'm really unsure about all these answers! Could you please check and explain each one? We were unable to transcribe this imageU Question 2 1 pts A standing wave is created on a stretched string as shown below. What harmonic has been created in the string? First O Second Fourth O Third Question 3 2 pts 45 Astring of length L-1.2m is attached at one end to a wave oscillator, which is vibrating at f=80 Hz. The other end...

  • A 5.15-m-long string that is fixed at one end and attached to a long string of...

    A 5.15-m-long string that is fixed at one end and attached to a long string of negligible mass at the other end is vibrating in its fifth harmonic, which has a frequency of 396 Hz. The amplitude of the motion at each antinode is 3.09 cm. (a) What is the wavelength of this wave? (b) What is the wave number? m-1 (c) What is the angular frequency? (d) Write the wave function for this standing wave. (Use the following as...

  • A generator at one end of a very long string creates a wave given by y...

    A generator at one end of a very long string creates a wave given by y = (7.44 cm) cos[(π/2)(3.80 m-1x + 3.17 s-1t)] and a generator at the other end creates the wave y = (7.44 cm) cos[(π/2)(3.80 m-1x - 3.17 s-1t)] Calculate the (a) frequency, (b) wavelength, and (c) speed of each wave. For x ≥ 0, what is the location of the node having the (d) smallest, (e) second smallest, and (f) third smallest value of x?...

  • A 5.45-m-long string that is fixed at one end and attached to a long string of...

    A 5.45-m-long string that is fixed at one end and attached to a long string of negligible mass at the other end is vibrating in its fifth harmonic, which has a frequency of 392 Hz. The amplitude of emotici at each antinode is 2.38 cm. (a) What is te wavelength of this wave? As - (b) What the wae number? ks (c) Wt is the ngular frequency? (d) Write the wave function for this standing wave. (Use the following as...

  • I need help with part A, string lengths/weights and frequency is here update on lab .88089...

    I need help with part A, string lengths/weights and frequency is here update on lab .88089 3=82.1 inch, 44129 A-c L=600 = 1.524m String1- 86.53 inch, 1.839 String 2= 82.3 inch, String String 4 = 80.6 inch, 22199 Vibrating String Experiment Objective To study the factors affecting the velocity of waves in a stretched string, Apparatus Linear transducer, function generator, string, meter stick, mis set, table clamp with pulley. Optional: strobe light. Part A Attach one end of a string...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT