Question

The following figure shows a mechanical system. The input is f and the output is x....

The following figure shows a mechanical system. The input is f and the output is x. what is the response of the system if

f(t) = 6N at t=0?
M=2, c=8, k=6
media%2Faef%2Faef70bfe-2638-4fe3-bf72-18
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The following figure shows a mechanical system. The input is f and the output is x....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 1 Figure Q1 shows a mechanical system. The system input is T) and output is supposed to ...

    Please write down the steps by steps solution, thank you! Question 1 Figure Q1 shows a mechanical system. The system input is T) and output is supposed to be 0. Please find the transfer function from T to θ 3, and discuss the stability of the system if the input is a unit impulse signal. (30 marks) To 01(t) 01t) I kg-m2 N 10 030) N2 100 100 kg-m2 100 N-m/rad 100 N-m-s/rad Figure Q1 Question 1 Figure Q1 shows...

  • Question 3 (35 marks) Consider a mechanical system shown in Figure 3. The system is at rest for t

    Question 3 (35 marks) Consider a mechanical system shown in Figure 3. The system is at rest for t<0. The input force f is applied at 0. The displacement x is the output of the system and is measured from the equilibrium position. kI b2 bi it Figure 3. Schematic of a mechanical system. (a) Obtain the traf) (10 marks) X (s) F(s) (b) Use of force-voltage analogy, obtain the equations for an electrical system (5 marks) (c) Draw a...

  • Q5 The equation of the motion of the mechanical system shown in the following figure is...

    Q5 The equation of the motion of the mechanical system shown in the following figure is governed by the following differential equation d2 x dx m7+9+= -f(t) - 3kx dt2 dt where m, C and k are mass, damping coefficient and spring constant, respectively. Consider the system with m = 10 kg, c = 80 Ns/m, k = 50 N/m, and the system is at rest at time t = 0 s. f(t) is the external force acting on the...

  • 3) Consider the system depicted below xz Input: F. Output: x Assume that all initial conditions a...

    3) Consider the system depicted below xz Input: F. Output: x Assume that all initial conditions are zero. a) Derive mathematical model of the system b Find unit step response c) Find the transfer function T(s) X2(s)/Fs) d) What is the final value of the output be. limx)-7) for F)- 4) Find the transfer function state space R(s) for each of the following sytems represented in a) 10 y-[1 0 0 b) 2 -3-8 3 -5 y-1 3 6 c)...

  • Figure below shows the time response of the system mechanical figure above to a force in step of 8.5 N. Following the...

    Figure below shows the time response of the system mechanical figure above to a force in step of 8.5 N. Following the analysis of the system in the figure above a) Determine the transfer function X(s)/F(s) of the system and give the standard form of the latter. b) Based on the response of this system at 8.5 N, determine the , and parameters of the mechanical system. c) By combining the results found previously, determine the value of the three...

  • 1. For a system described in Figure 1. x(t) - input voltage, y(t) - output voltage....

    1. For a system described in Figure 1. x(t) - input voltage, y(t) - output voltage. (a) Determine Continuous Time (C.T.) "Math Model" when R = 1/3 121, L = 1/2 [F], and C = 1 [F]. (b) Fine "Zero Input Response". y zit. for the C.T.system. when y(0) = 1 [V], y'(0) = 2 IV (c) Draw "Zero Input Response". y_zi(t) with respect to time 1 (2-D graph) (d) Find impulse response, h(!). of the Continuous Time (C.T.) system....

  • For the mechanical system shown below find the input-output equation relating xolt) to the displacement input...

    For the mechanical system shown below find the input-output equation relating xolt) to the displacement input x(t) 1. ド ド Ki Derive the transfer function X,G)/X, (s)of the mechanical system shown below. The displacements x, and xo are measured from their respective equilibrium potions. Is the system a first-order system if so, what is the time constant? 2. k1 bz k2 3. Consider the mechanical system shown below. The system is initially at rest. The displacements x, and x2 are...

  • Problem 24: (18 points) 1. (6 points) Figure 2 shows an RC circuit with input f(t)...

    Problem 24: (18 points) 1. (6 points) Figure 2 shows an RC circuit with input f(t) and output y(t) Function Generator R, v, (r) y1) Figure 2: RC circuit. (a) (1 point) Sketch the circuit in the phasor domain by replacing the capacitor with its impedance represen- (b) (3 points) Using circuit analysis techniques, show that the frequency response function is Specify the DC gain, K, and the time constant, T, in terms of the parameters R, R, and C...

  • Q5: Consider the system in Figure 1. Assume that X (F) 0 for lfl> F /2 and that How is the output...

    Q5: Consider the system in Figure 1. Assume that X (F) 0 for lfl> F /2 and that How is the output of the discrete-time system y(n) related to the input signal x (t)? LA Q5: Consider the system in Figure 1. Assume that X (F) 0 for lfl> F /2 and that How is the output of the discrete-time system y(n) related to the input signal x (t)? LA

  • Consider the translational mechanical system shown in the figure. A 1-pound force, f(t), is applied at...

    Consider the translational mechanical system shown in the figure. A 1-pound force, f(t), is applied at t = 0. If fo = 1, find K and M such that the response is characterized by a 4- second settling time and a 1-second peak time. Also, what is the resulting percent overshoot? ft

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT