Question

Two cars approach an intersection at a right angle to each other.  If an inelastic collision occurs...

Two cars approach an intersection at a right angle to each other.  If an inelastic collision occurs at the intersection, determine the x component of the final momentum of the combined vehicles.  Car 1 of mass 1,206.86 kg approaches the intersection from the left with a speed of 18.02 m/s.  Car 2 of mass 1,038.6 kg approaches the intersection from the south with a speed of 24.3 m/s

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two cars approach an intersection at a right angle to each other.  If an inelastic collision occurs...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two cars approach an intersection at a right angle to each other. If an inelastic collision...

    Two cars approach an intersection at a right angle to each other. If an inelastic collision occurs at the intersection, determine the x component of the final momentum of the combined vehicles. Car 1 of mass 1,161.48 kg approaches the intersection from the left with a speed of 10.31 m/s. Car 2 of mass 1,132.58 kg approaches the intersection from the south with a speed of 19.46 m/s.

  • EXAMPLE 6.8 Collision at an Intersection GOAL Analyze a two-dimensional inelastic collision. 25.0 m/s +20,0 m/s...

    EXAMPLE 6.8 Collision at an Intersection GOAL Analyze a two-dimensional inelastic collision. 25.0 m/s +20,0 m/s A top view of a perfectly inelastic collision between a car and a van. PROBLEM A car with mass 1.50 x 103 kg traveling east at a spegd of 25.0 m/s collides at an intersection with a 2.50 x 10 kg van traveling north at a speed of 20.0 m/s, as shown in the figure. Find the magnitude and direction of the velocity of...

  • Q1 A small object with a momentum of magnitude 2.71 kg m/s approaches head-on a large...

    Q1 A small object with a momentum of magnitude 2.71 kg m/s approaches head-on a large object at rest. The small object bounces straight back with a momentum of magnitude 6.19 kg m/s. What is the magnitude of the small object's momentum change in kg m/s? Q2 A force acts on a 4.708 kg mass as follows: the force starts at zero and rises to 60.334 N linearly in 2.24 seconds, it remains at 60.334 N for another 5.756 seconds,...

  • Two cars of the same mass collide at an intersection. Just before the collision one car...

    Two cars of the same mass collide at an intersection. Just before the collision one car is traveling east at 50.0 km/h and the other car is traveling south at 60.0 km/h. If the collision is completely inelastic, so the two cars move as one object after the collision, what is the speed of the cars immediately after the collision? _______ km/h

  • Two cars collide at an intersection. Car A, with a mass of 2000 kg

    Two cars collide at an intersection. Car A, with a mass of 2000 kg, is going from west to east, while car of mass 1500 kg, is going from north to south at 15 m/s. As a result, the two cars become enmeshed and move as one. As an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of 67° south of east from the point of impact. How fast...

  • Two cars collide at an intersection. Car A, with a mass of 1800 kg , is...

    Two cars collide at an intersection. Car A, with a mass of 1800 kg , is going from west to east, while car B , of mass 1500 kg , is going from north to south at 17 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...

  • Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...

    Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B, of mass 1400 kg , is going from north to south at 12.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterward. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of...

  • 1-Dimensional INELASTIC Collision: A 1-kg mass traveling from left to right at 10.0 m/s hits and...

    1-Dimensional INELASTIC Collision: A 1-kg mass traveling from left to right at 10.0 m/s hits and STICKS to a 6.00 kg mass that was travelling from right to left at 10.0 m/s. a) What is the final velocity (speed and direction) of the combined mass after the collision? b) How much KINETIC ENERGY has been LOST in this collision? c) Where did that lost energy go?

  • Two cars collide at an intersection. Car A, with a mass of 1800 kg , is...

    Two cars collide at an intersection. Car A, with a mass of 1800 kg , is going from west to east, while car B , of mass 1300 kg , is going from north to south at 16 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...

  • Two cars collide at an icy intersection and stick together afterward. The first car has a...

    Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1200 kg and was approaching at 6.00 m/s due south. The second car has a mass of 800 kg and was approaching at 21.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT