Question

A bugle can be represented by a cylindrical pipe of length L=1.35m. The pipe is open...

A bugle can be represented by a cylindrical pipe of length L=1.35m. The pipe is open at one end and closed at the other end(the end with the mouthpiece). Calculate the longest three wavelengths of standing waves inside the bugle. Also calculate the three most frequencies and the three longest wavelengths of the sound that is produced in the air around the bugle.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

For one end open pipe we have condition as below,

L= nλn/4      …where n=1,3,5,……

λn = 4L/n

fn = v/λn = nv/4L

For n=1,

λ1 = 4L/1 = 4L = 4*1.35 = 5.4 m

f1 = v/λ1 = (343m/s)/(5.4m) = 63.52 Hz

For n=3,

λ3 = 4L/3 = 4L/3 = 4/3*1.35 = 1.8 m

f3 = v/λ3 = (343m/s)/(1.8m) = 190.56 Hz

For n=5,

λ 5 = 4L/5 = 4L/5 = 4/5*1.35 = 1.08 m

F5 = v/λ5 = (343m/s)/(1.08m) = 317.56 Hz

Add a comment
Know the answer?
Add Answer to:
A bugle can be represented by a cylindrical pipe of length L=1.35m. The pipe is open...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 4 [8 pts] A long pipe, length L, is closed at both ends, and filled...

    Problem 4 [8 pts] A long pipe, length L, is closed at both ends, and filled with a gas with speed of sound v. The pipe is excited in some fashion in order to produce standing waves. (a) Sketch the standing wave pattern for the four lowest frequencies supported by this pipe. Label the nodes and antinodes. (b) Make a table of the wavelengths and frequencies of the sound waves that are formed by these four excitations, in terms of...

  • A pipe organ may contain tens of thousands of pipes of varying shapes, sizes and materials....

    A pipe organ may contain tens of thousands of pipes of varying shapes, sizes and materials. (a) A pipe destined for an organ is open at both ends and has a length of 1.2 m. What is the wavelength of the longest standing wave that can be produced by this pipe? (b) The fundamental frequency produced by the pipe is measured to be 150 Hz. Calculate the speed of sound for the air in the pipe. (c) If one end...

  • Standing Waves in a Pipe - Both Ends Open Pattern (a) Pattern (b) Pattern (c) Pattern...

    Standing Waves in a Pipe - Both Ends Open Pattern (a) Pattern (b) Pattern (c) Pattern (d) The above figure shows standing wave patterns in a pipe whose left end is closed but the right end is open in all the patterns, the length of the pipe L = 2.10 m. The speed of sound in air is 343 m/s. You will find the wavelengths and frequencies of these standing wave patterns. (C) In Pattern (c), What is the wavelength?...

  • a) Find the pattern of allowed wavelengths and frequencies for standing waves inside a pipe of...

    a) Find the pattern of allowed wavelengths and frequencies for standing waves inside a pipe of length L open at both ends. Show how you arrive at your answer. b) If the length of the pipe is 1.00 m and it is filled with air, tell me the frequency of the 5th harmonic.

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz.    a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch write the wavelength for each pipe in terms of the pipe lengths LA...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz. a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch, write the wavelength for each pipe in terms of the pipe lengths LA and...

  • An organ pipe is 2.0-m long. Assume the pipe is cylindrical with one closd and one...

    An organ pipe is 2.0-m long. Assume the pipe is cylindrical with one closd and one open end. 1) What is the longest wavelength for a standing sound wave possible in the pipe? 2) What is the wavelength of the first 1st overtone? What is the wavelength of the 2nd overtone? 3) If the frequency of the 4th harmonic is 290 hz, what is the speed of sound in the pipe? An organ pipe is 2.0-m long. Assume the pipe...

  • An organ pipe is 2.0-m long. Assume the pipe is cylindrical with one closed and one...

    An organ pipe is 2.0-m long. Assume the pipe is cylindrical with one closed and one open end. (Show your calculations to obtain the answers below.) 1. What is the longest wavelength A for a standing sound wave possible in the pipe?

  • (8) Calculate the length of a pipe that has a fundamental frequency of 1085 Hz, assuming...

    (8) Calculate the length of a pipe that has a fundamental frequency of 1085 Hz, assuming the speed of sound is 343 m/s, and assuming the pipe is: (a) closed at one end. Submit Answer Tries 0/10 (b) open at both ends. Submit Answer Tries 0/10 (9) (a) What is the longest wavelength for standing waves on a 697.0 cm long string that is fixed at both ends? Submit Answer Tries 0/10 (b) What is the second longest wavelength for...

  • A pipe of length L is open at both ends. By blowing air across one end...

    A pipe of length L is open at both ends. By blowing air across one end of the pipe, standing waves can be formed in the pipe. Which of the following statements are true? It is possible for half a wavelength to fill the length of the pipe The highest resonant frequency is called the fundamental The middle of the pipe can never be a node or an antinode When the pipe resonates, air molecules move back and forth perpendicular...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT