Question

A block is projected up a frictionless inclined plane with initial speed v0 = 5.05 m/s....

A block is projected up a frictionless inclined plane with initial speed v0 = 5.05 m/s. The angle of incline is θ = 30.9°. (a) How far up the plane does it go? (b) How long does it take to get there? (c) What is its speed when it gets back to the bottom?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Dear student,
Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.
Thanks for asking ..

Add a comment
Know the answer?
Add Answer to:
A block is projected up a frictionless inclined plane with initial speed v0 = 5.05 m/s....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1.40-kg block is on a frictionless, 20 ∘ inclined plane. The block is attached to...

    A 1.40-kg block is on a frictionless, 20 ∘ inclined plane. The block is attached to a spring (k = 30.0 N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-gsuspended mass. The suspended mass is given an initial downward speed of 1.40 m/s . How far does it drop before coming to rest? (Assume the spring is unlimited in how...

  • A block of weight w = 40.0 N sits on a frictionless inclined plane, which makes...

    A block of weight w = 40.0 N sits on a frictionless inclined plane, which makes an angle θ = 35.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1)A force of magnitude F = 22.9 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. Part B What is Wg, the work done on the block by the force of gravity w⃗  as the block moves...

  • Part 1) A small block travels up a frictionless incline that is at an angle of...

    Part 1) A small block travels up a frictionless incline that is at an angle of 30.0°above the horizontal. The block has speed 4.26 m/s at the bottom of the incline. Assume g = 9.80 m/s2. How far up the incline (measured parallel to the surface of the incline) does the block travel before it starts to slide back down? Part 2) Complete the following exercises. (Assume g = 9.80 m/s2.) (a) A small block is released from rest at...

  • A frictionless plane is 10.0 m long and inclined at 41.00. A sled starts at the...

    A frictionless plane is 10.0 m long and inclined at 41.00. A sled starts at the bottom with an initial speed of 5.50 m/s up the incline. When the sled reaches the point at which it momentarily stops, a second sled is released from the top of the incline with an initial speed v.. Both sleds reach the bottom of the incline at the same moment. (a) Determine the distance that the first sled traveled up the incline. (b) Determine...

  • A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes...

    A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes an angle θ = 28.0 ∘ with respect to the horizontal. A force of magnitude F = 11.7 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. 1. The block moves up an incline with constant speed. What is the total work Wtotal done on the block by all forces as the block...

  • A block of mass m = 3.5 kg is on an inclined plane with a coefficient...

    A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.31, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 54°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...

  • A frictionless plane is 10.0 m long and inclined at 28.0°. A sled starts at the...

    A frictionless plane is 10.0 m long and inclined at 28.0°. A sled starts at the bottom with an initial speed of 5.80 m/s up the incline. When the sled reaches the point at which it momentarily stops, a second sled is released from the top of the incline with an initial speed vi. Both sleds reach the bottom of the incline at the same moment. (a) Determine the distance that the first sled traveled up the incline. m (b)...

  • A block of weight w = 35.0 N sits on a frictionless inclined plane, which makes...

    A block of weight w = 35.0 N sits on a frictionless inclined plane, which makes an angle θ = 32.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1)A force of magnitude F = 18.5 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. Part A The block moves up an incline with constant speed. What is the total work Wtotal done on the...

  • Use Energy concept to solve 2. A block slides down an inclined plane of slope angle...

    Use Energy concept to solve 2. A block slides down an inclined plane of slope angle 0 with constant velocity. It is then projected up the same plane with an initial speed v.. How far up the incline will it move before coming to rest?

  • A block of weight w = 35.0 N sits on a frictionless inclined plane, which makes...

    A block of weight w = 35.0 N sits on a frictionless inclined plane, which makes an angle ? = 24.0 ? with respect to the horizontal, as shown in the figure. (Figure 1)A force of magnitude F = 14.2 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. What is WF, the work done on the block by the applied force F? as the block moves a distance...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT