Question

The problem statement for problem 1 Consider an open feedwater heater with two intakes and one...

The problem statement for problem 1 Consider an open feedwater heater with two intakes and one output. The OFWH operates at a pressure of 800 kPa and outputs a saturated mix with a quality of 0.65, while the hot leg receives steam at a temperature of 300°C. If the mass flow rate in the cold leg is 28.1 kg/s and the exit mass flow rate is 30 kg/s, what are the mass flow rate of the hot leg and temperature of the cold leg?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The problem statement for problem 1 Consider an open feedwater heater with two intakes and one...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 7.7 kg/s cold feedwater enters a 500kPa open feedwater heater (a mixing chamber) at 50oC. Bleed...

    7.7 kg/s cold feedwater enters a 500kPa open feedwater heater (a mixing chamber) at 50oC. Bleed steam is available from the turbine at 500kPa and 250oC. At what rate must bleed steam be supplied to the open feedwater heater so the feedwater leaves this unit as a saturated liquid. Determine the mass flow rate in unit of kg/s.

  • Liquid water enters a feedwater heater at inlet 1 with inlet condition ls 15 mpa, 40celcius...

    Liquid water enters a feedwater heater at inlet 1 with inlet condition ls 15 mpa, 40celcius at 60kg/s. Another stream of water in saturated mixture enters the heater at inlet 2 at temperature of 175 celcius. The heater operates at steady state and heat transfer to surrounding can be neglected. At exit 3, saturated liquid flows out at 275 kpa. Select two different values of mixture quality at inlet 2 between 0.5 and 0.8, and subsequently plot the mass flow...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 6 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 28 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

  • An open feedwater heater operates at 7 bars. Compressed liquid water at 35°C enters at one Given: section, while su...

    An open feedwater heater operates at 7 bars. Compressed liquid water at 35°C enters at one Given: section, while superheated vapor enters at another section. The fluids mix and leave the heater as a saturated liquid. Let To 20°Cand Po 1 bar and assume the feedwater heater is well insulated Find: a) The change in flow exergy (kJ/s) if the flow rate of compressed liquid is 72.8 kg/s and the mass flow rate of superheated vapor is 16.7 kg/s and...

  • Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8.0 MPa, 500°C and expands to 0.8 MPa. The steam is reheated to 500°C before entering the second turbine, where it expands to the condenser pressure of 10 kPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 200°C and 8.0...

  • SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed fee...

    SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed feedwater heater. Superheated steam enters the turbine with a mass flow rate of 120 kg/s at 16 MPa and 560°C (State 1). Some fraction of the steam is extracted at 40 bar (State 2) and is supplied to the closed feedwater heater. The remaining steam expands to a pressure of 3 bar (State 3), another fraction is extracted at this pressure, and is supplied to...

  • Question 4 Liquid water enters a feedwater heater at inlet 1 with inlet conditions 15 MPa,...

    Question 4 Liquid water enters a feedwater heater at inlet 1 with inlet conditions 15 MPa, 40°C at 60 kg/s. Another stream of water in saturated mixture enters the heater at inlet 2 at temperature of 175 °C. The heater operates at steady state and heat transfer to surrounding can be neglected. At exit 3, saturated liquid flows out at 275 kPa. Select two (2) different values of mixture quality at inlet 2 between 0.5 and 0.8, and subsequently plot...

  • In large steam power plants, the feedwater is frequently heated in a closed feedwater heater by...

    In large steam power plants, the feedwater is frequently heated in a closed feedwater heater by using steam extracted from the turbine at some stage. Steam enters the feedwater heater at 1 MPa and 215°C and leaves as saturated liquid at the same pressure. Feedwater enters the heater at 2.5 MPa and 50°C and leaves at 10°C below the exit temperature of the steam. Determine the ratio of the mass flow rates of the extracted steam and the feedwater. The...

  • Question 4 Liquid water enters a feedwater heater at inlet 1 with inlet conditions 15 MPa,...

    Question 4 Liquid water enters a feedwater heater at inlet 1 with inlet conditions 15 MPa, 40°C at 60 kg/s. Another stream of water in saturated mixture enters the heater at inlet 2 at temperature of 175 °C. The heater operates at steady state and heat transfer to surrounding can be neglected. At exit 3, saturated liquid flows out at 275 kPa. Select two (2) different values of mixture quality at inlet 2 between 0.5 and 0.8, and subsequently plot...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT