Question

1.Explain the working principle of simple vapor compression refrigeration system with neat diagram

1.Explain the working principle of simple vapor compression refrigeration system with neat diagram

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1.Explain the working principle of simple vapor compression refrigeration system with neat diagram
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 100-ton refrigeration system operates on the simple vapor compression refrigeration system with R-22 as the...

    A 100-ton refrigeration system operates on the simple vapor compression refrigeration system with R-22 as the working fluid.  The evaporator pressure is 2 bar and the condenser pressure is 30 bar.  The refrigerant leaves the compressor at 160oC. 1 ton of refrigeration = 3.517 kW Determine the cooling load, in kW. Plot all five points (1, 2s, 2a, 3, 4) on the P-h diagram. Determine the power consumed by the refrigeration system, in kW. Determine the COP of the system. Isentropic efficiency...

  • Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with...

    Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with ammonia as the working fluid, has an evaporator temperature of -20°C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of refrigerant is 3 kg/minute. Determine the coefficient of performance and the refrigerating capacity in tons. Given: Find: T-s Process Diagram: Schematic Assume:

  • A vapor compression refrigeration system operates at steady state with refrigerant 134a as the working fluid....

    A vapor compression refrigeration system operates at steady state with refrigerant 134a as the working fluid. Superheated vapor enters the compressor at 10 lbf/in2 , 0 oF. The liquid leaving the condenser is at 180 lbf/in2 , 100 oF. There is no significant pressure drop in the evaporator or condenser. For compressor efficiency of 83% and refrigeration capacity of 6 tons, determine (a) the compressor power input in horsepower, and (b) the coefficient of performance. A vapor compression refrigeration system...

  • In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at...

    In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at -22°C (State 1 ) .. -   Ammonia enters the condenser at 16 Bar and 160°C (State 2; h2 = 1798.45 kJ/kg) -   Ammonia exits the condenser as saturated l1quid at 16 Bar (State 3; h3 = 376.46 kJ/kg) -   The refrigeration capacity is 150 kW. Draw the system schematic and the T-s diagram and determine: i)   the mass flow rate· of refrigerant, ii)   the...

  • Consider a 300 kJ/min refrigeration system that operates on an ideal vapor-compression refrigerat...

    Consider a 300 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with R-134a as the working fluid. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. Show the cycle on a T-s diagram with respect to saturation lines and determine (a) the quality of the refrigerant at the end of the throttling process, (b) coefficient of performance, (c) the power input to the compressor , (d) Generation of entropy...

  • Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle....

    Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle. The evaporator temperature is 8°C and the condenser pressure is 12 bar. Saturated vapor enters the compressor and superheated vapor enters the condenser at 60°C and exits the condenser as saturated liquid. For a refrigeration capacity of 8 tons or 2.816 x104 J/s determine the following: (1) The refrigerant mass flow rate in kg/s; (2) The compressor isentropic efficiency [Hint: Interpolation is required); (3)...

  • The coefficient of performance-of vapor-compression refrigeration cycles

    a) The coefficient of performance-of vapor-compression refrigeration cycles improves when the refrigerant is subcooled before it enters the throttling valve Can the refrigerant be subcooled indefinitely to maximize this effect, or is there a lower limit? Explain brieflyb) A two-stage compression refrigeration system with a flash chamber is used to produce chilled water for a commercial building The refrigeration system operates between a pressure limits of 1 2 MPa and 200 kPa with refrigerant-134a as the working fluid. The refrigerant leaves...

  • EXAMPLE 6 A household refrigeration system works with a vapor compression refrigeration system with two evaporators...

    EXAMPLE 6 A household refrigeration system works with a vapor compression refrigeration system with two evaporators using Refrigerant 134a as the working fluid. This arrangement is used to achieve refrigeration at two different temperatures with a single compressor and a single condenser. The low temperature evaporator operates at -18°C with saturated vapor at its exit and has a refrigerating capacity of 10.5 kW (3 tons). The higher- temperature evaporator produces saturated vapor at 3.2 bar at its exit and has...

  • A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid....

    A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. The system operates the evaporator at 0.4 MPa, the condenser at 1.6 MPa, and the separator at 0.8 MPa. The compressors use 25 kW of power. Given that the refrigerant is saturated liquid at the inlet of each expansion valve and saturated vapor at the inlet of each compressor, and the compressors are isentropic: (0) show the process on a T-s diagram; ) calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT