Question

An equilibrium mixture contains 0.950 mol HI, 0.490 mol I2, and 0.290 mol H2 in a...

An equilibrium mixture contains 0.950 mol HI, 0.490 mol I2, and 0.290 mol H2 in a 1.00-L flask. What is the equilibrium constant for the following reaction? 2HI(g) H2(g) + I2(g) K = How many moles of I2 must be removed in order to double the number of moles of H2 at equilibrium? mol I2

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An equilibrium mixture contains 0.950 mol HI, 0.490 mol I2, and 0.290 mol H2 in a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • How many moles of H2 and HI will be present at equilibrium if 0.8430 mol HI...

    How many moles of H2 and HI will be present at equilibrium if 0.8430 mol HI are placed into a 1-L flask and allowed to react at a temperature where for the following reaction takes place: 2HI(g) H2(g) + I2(g) K = 16.5 mol H2? mol HI?

  • The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g)...

    The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) ---------->2HI(g) 1) Calculate the equilibrium concentrations of reactants and product when 0.309 moles of H2 and 0.309 moles of I2 are introduced into a 1.00 L vessel at 698 K. [H2] = M? [I2] = M? [HI] = M? 2.The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K: PCl5(g)------->PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a...

  • An equilibrium mixture was found to have the following composition in a 1.00 L flask: H2...

    An equilibrium mixture was found to have the following composition in a 1.00 L flask: H2 CO2 H2O CO 0.630 0.590 0.210 0.280 moles What is the equilibrium constant for the following gas phase reaction? H2 + CO2 H2O + CO K = How many moles of H2O must be removed in order to increase the number of moles of CO at equilibrium to 0.553 mol? mol H2O -/12 points v An equilibrium mixture was found to have the following...

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ----> H2(g)...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ----> H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.306 M HI, 4.10×10-2 M H2 and 4.10×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.208 mol of HI(g) is added to the flask? [HI]   = ______ M [H2]   = ______ M [I2]   = ______M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.319 M HI, 4.27×10-2 M H2 & 4.27×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.224 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M please help me!

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ⇌H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ⇌H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.320 M HI,   4.29×10-2 M H2 and 4.29×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.233 mol of HI(g) is added to the flask? [HI] = ___M [H2] = ___ M [I2] = ___M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.329 M HI, 4.41×10-2 M H2 and 4.41×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.54×10-2 mol of H2(g) is added to the flask? [HI] = M [H2] = M [I2] = M

  • An equilibrium mixture was found to have the following composition in a 1.00 L flask: H2...

    An equilibrium mixture was found to have the following composition in a 1.00 L flask: H2 0.510 CO2 H20co 0.520 0.180 0.280 moles What is the equilibrium constant for the following gas phase reaction? H2 + CO2 = H2O + CO K = How many moles of H2O must be removed in order to increase the number of moles of CO at equilibrium to 0.514 mol? mol H20

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.302 M HI, 4.05×10-2 M H2 and 4.05×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.203 mol of HI(g) is added to the flask?

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.316 M HI, 4.24×10-2 M H2 and 4.24×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.21×10-2 mol of I2(g) is added to the flask?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT