Question

An insulated piston-cylinder device contains 0.1m3 of air (ideal gas) at 400 kPa and 25℃. A...

An insulated piston-cylinder device contains 0.1m3 of air (ideal gas) at 400 kPa and 25℃. A paddle wheel within the cylinder is rotated until 15 kJ of work is done on the air while the pressure is held constant. Assuming the kinetic and potential energies are negligible and the gas constant and specific heat of air are ? = 0.287 kJ kg∙K and ?? = 1.005 kJ kg∙K .

Tasks:

( a ) Determine the mass of air inside the piston-cylinder

( b ) Determine the final temperature of the air (20 pts)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An insulated piston-cylinder device contains 0.1m3 of air (ideal gas) at 400 kPa and 25℃. A...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A piston cylinder assembly fitted with a slowly rotating paddle wheel contains 0.13 kg of air...

    A piston cylinder assembly fitted with a slowly rotating paddle wheel contains 0.13 kg of air at 300K. The air undergoes a constant pressure process to a final temp of 400K. During the process heat is transfered to the air by Q=12kJ. Assuming the ideal gas model with k=1.4 and negligible changes in kinetic and potential energy for the air, determine the work done by the paddle on the air and the work done by the air to displace the...

  • A piston–cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially...

    A piston–cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially at 300 K. The air undergoes a constant-pressure process to a final temperature of 420 K. During the process, energy is gradually transferred to the air by heat transfer in the amount 12 kJ. Assuming the ideal gas model with k = 1.4 and negligible changes in kinetic and potential energy for the air, determine the work done by the paddle wheel on the...

  • A piston-cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially...

    A piston-cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially at 300 K. The air undergoes a constant-pressure process to a final temperature of 440 K. During the process, energy is gradually transferred to the air by heat transfer in the amount 12 kJ. Assuming the ideal gas model with k = 1.4 and negligible changes in kinetic and potential energy for the air, determine the work done by the paddle wheel on the...

  • Two kg of air as an ideal gas with constant properties expands inside a piston-cylinder device...

    Two kg of air as an ideal gas with constant properties expands inside a piston-cylinder device from an initial state where P. - 200 kPa. T-7°C to a state where P2 - 100 kPa and T2- 327° (Assume cp = 1.003 kJ/Kg.K.cv -0.716 kJ/kg.K. and R=0.287 kJ/Kg.K). 3. The change in internal energy, in kJ, between the specified states is most nearly: -483 460 - 166 -241 -322 120 . 231 144

  • Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125...

    Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125 ̊C. (a) If the volume of air in the device increases to 0.15 m3 while the pressure remains constant, determine the work done by the system during the process. (b) If as a result of heat transfer to the surrounding, the pressure and temperature in the device drop to 240 kPa and 55 ̊C, respectively, and the piston is held such that the volume...

  • Air in an insulated piston-cylinder assembly undergoes a compression process from 100 kPa, 300 K to...

    Air in an insulated piston-cylinder assembly undergoes a compression process from 100 kPa, 300 K to a second state at 600 K and 1 MPa. How much entropy is produced, in kJ/kgK? You can assume that the air is modeled as an ideal gas. Rair 0.287 kJ/kgK

  • 2. (5 Points) 3-kg of air (an ideal gas) is heated in a piston-cylinder device from...

    2. (5 Points) 3-kg of air (an ideal gas) is heated in a piston-cylinder device from 17°C to 117°C at a constant pressure of 100 kPa. Determine the entropy change in kJ/K, assuming: a. Constant specific heat. b. Variable specific heat.

  • A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It...

    A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It is then compressed in a polytropic process PV3 = C to half the original volume. Assuming the ideal gas model for air and specific heat ratio is constant, k=1.4, determine (a) the final temperature, (b) work and heat transfer, each in kJ. R= 0.287 kJ/kg K. W, 82

  • An insulated piston-cylinder device contains 5 L of saturated liquid water at a constant pressure of...

    An insulated piston-cylinder device contains 5 L of saturated liquid water at a constant pressure of 175 kPa. Water is stirred by a paddle wheel while a current of 8 A flows for 45 min through a-resistor placed in the water. If one-half of the liquid is evaporated during this constant pressure process and the paddle-wheel work amounts to 400 kJ, determine the voltage of the source. Also, show the process on a P-v diagram with respect to saturation lines.

  • Consider a piston cylinder process in air (as an ideal gas with constant specific heats) which...

    Consider a piston cylinder process in air (as an ideal gas with constant specific heats) which goes from state 1 at 1 atm, 300 K to state 2 at: 3 atm and 400K. (use k=1.4, Cp = 1.005 kJ/(kg K), Cv=0.718 kJ/(kg K), R= 0.287 kJ/(kg K)) (these are the same conditions as question 4). What must the heat transfer be (in kJ/kg), if the process takes place without entropy generation and it can be assumed the temperature at system...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT