Question

2. (5 Points) 3-kg of air (an ideal gas) is heated in a piston-cylinder device from 17°C to 117°C at a constant pressure of 1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given: Mass and initial and final temperature is given at constant pressure of 1 Bar or 100KPa.

To find : Entropy change for given two cases.

Concept Used: For constant specific heat we will use formula.

For variable specific heat we will use table to find Entropy value.

(Ca) Constant Specifi Reat Then s=m1 cp.ln Ty Pi Op- 1-005 lkg 6s= 0.8332 KJlk Valable specific Rent m Ts table for at and at

This table is used.

1400 1350 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 700 650 600 550 500 450 400 350 300 250 200 150 100 50 50 100 6

Comments: As specific heat of air increases with air so entropy value for second case will be more.

Add a comment
Know the answer?
Add Answer to:
2. (5 Points) 3-kg of air (an ideal gas) is heated in a piston-cylinder device from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An insulated piston-cylinder device contains 0.1m3 of air (ideal gas) at 400 kPa and 25℃. A...

    An insulated piston-cylinder device contains 0.1m3 of air (ideal gas) at 400 kPa and 25℃. A paddle wheel within the cylinder is rotated until 15 kJ of work is done on the air while the pressure is held constant. Assuming the kinetic and potential energies are negligible and the gas constant and specific heat of air are ? = 0.287 kJ kg∙K and ?? = 1.005 kJ kg∙K . Tasks: ( a ) Determine the mass of air inside the...

  • A piston-cylinder device contains 0.78 kg of nitrogen gas at 140 kPa and 37°C. The gas...

    A piston-cylinder device contains 0.78 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R= 0.2968 kJ/kg-K. The constant volume specific heat of nitrogen at room temperature is Cr=0.743 kJ/kg-K. (Round the final answer to five decimal places.) The entropy...

  • A piston-cylinder device contains 0.63 kg of nitrogen gas at 140 kPa and 37°C. The gas...

    A piston-cylinder device contains 0.63 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3. constant. The process ends when the volume is reduced by one-halt. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R-0.2968 kJ/kg K. The constant volume specific heat of nitrogen at room temperature is C -0.743 kJ/kg K. (Round the final answer to five decimal places.) The...

  • Check my work 6 10 A piston-cylinder device contains 0.63 kg of nitrogen gas at 140...

    Check my work 6 10 A piston-cylinder device contains 0.63 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R = 0.2968 kJ/kg.K. The constant volume specific heat of nitrogen at room temperature is cy" 0.743 kJ/kg.K. (Round the final...

  • Two kg of air as an ideal gas with constant properties expands inside a piston-cylinder device...

    Two kg of air as an ideal gas with constant properties expands inside a piston-cylinder device from an initial state where P. - 200 kPa. T-7°C to a state where P2 - 100 kPa and T2- 327° (Assume cp = 1.003 kJ/Kg.K.cv -0.716 kJ/kg.K. and R=0.287 kJ/Kg.K). 3. The change in internal energy, in kJ, between the specified states is most nearly: -483 460 - 166 -241 -322 120 . 231 144

  • A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It...

    A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It is then compressed in a polytropic process PV3 = C to half the original volume. Assuming the ideal gas model for air and specific heat ratio is constant, k=1.4, determine (a) the final temperature, (b) work and heat transfer, each in kJ. R= 0.287 kJ/kg K. W, 82

  • 1 kg air in a piston-cylinder assembly is heated at constant pressure, resulting the expansion of...

    1 kg air in a piston-cylinder assembly is heated at constant pressure, resulting the expansion of the volume. The initial temperature of the air was 300 K, and the air temperature becomes 500 K after the expansion. What is the boundary work done by the air? Assume that air is an ideal gas with constant specific heats ( 0.718 v c = kJ/kg-K and 1.005 p c = kJ/kg-K)..

  • Nitrogen in a piston cylinder device occupies 0.5 m3 at 100 kPa and 20 °C. It undergoes a compres...

    Nitrogen in a piston cylinder device occupies 0.5 m3 at 100 kPa and 20 °C. It undergoes a compression process (during which PV1.30-constant) to a final state where the temperature is 200 °C. The specific heats are assumed to be constant while Tsur - 15 C a) Prove that the gas, at state 1, can be treated as an ideal gas. b) Find the pressure and volume at state 2 c) Find the heat transfer, in kJ. d) Find the...

  • A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air...

    A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air is now compressed slowly according to the relation P Vk = constant, where k = 1.4, until it reaches a final temperature of 77°C. Sketch the P-V diagram of the process with respect to the relevant constant temperature lines, and indicate the work done on this diagram. Using the basic definition of boundary work done determine the boundary work done during the process [-7.18...

  • (a) An insulated piston cylinder device contains 5 L of saturated liquid water at a constant...

    (a) An insulated piston cylinder device contains 5 L of saturated liquid water at a constant pressure of 150 kPa. The cylinder was equipped with the electric heater inside it. The liquid is heated at constant pressure until it becomes saturated vapour. Determine the entropy change of the water during this process in kJ/K. (10 Marks) (b) A stream of refrigerant R134a enters a steady flow device at 100 kPa, 50 °C at a rate of 1 kg/s. Two streams...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT