Question

Two concentric spherical shells of diameter 13.6 cm and 26.0 cm are used to form a...

Two concentric spherical shells of diameter 13.6 cm and 26.0 cm are used to form a spherical capacitor. The charges on the inner and outer shells are −5.00 µC and +5.00 µC, respectively. (a) Determine the potential difference from the inner to the outer shell. Use the fact that the magnitude of the electric field at a distance r from the center of the inner shell is given by E = kQ/ r2 , where k is Coulomb's constant and Q is the charge on the shell. Incorrect: Your answer is incorrect. How is the potential difference defined in terms of the electric field when the field varies with distance? Did you consider the direction of the electric field in the space between the two shells? kV (b) If the space between the two shells is filled with air, determine the capacitance.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two concentric spherical shells of diameter 13.6 cm and 26.0 cm are used to form a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two concentric spherical shells of diameter 13.6 cm and 29.0 cm are used to form a...

    Two concentric spherical shells of diameter 13.6 cm and 29.0 cm are used to form a spherical capacitor. The charges on the inner and outer shells are −9.00 µC and +9.00 µC, respectively. (a) Determine the potential difference from the inner to the outer shell. Use the fact that the magnitude of the electric field at a distance r from the center of the inner shell is given by E = KQ/r2, where K is Coulomb's constant and Q is...

  • The space between two concentric conducting spherical shells of radii b = 2.20 cm and a...

    The space between two concentric conducting spherical shells of radii b = 2.20 cm and a = 1.20 cm is filled with a substance of dielectric constant κ = 24.2. A potential difference V = 50.0 V is applied across the inner and outer shells. Determine (a) the capacitance of the device, (b) the free charge q on the inner shell, and (c) the charge q induced along the surface of the inner shell.

  • The space between two concentric conducting spherical shells of radii b = 1.70 cm and a...

    The space between two concentric conducting spherical shells of radii b = 1.70 cm and a = 1.20 cm is filled with a substance of dielectric constant κ = 20.5. A potential difference V = 62.0 V is applied across the inner and outer shells. (a) Determine the capacitance of the device. (b) Determine the free charge q on the inner shell. (c) Determine the charge q' induced along the surface of the inner shell.

  • A thin spherical shell with radius R1 = 4.00 cm is concentric with a larger thin...

    A thin spherical shell with radius R1 = 4.00 cm is concentric with a larger thin spherical shell with radius 6.00 cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=−9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. a)What is the electric potential due to the two shells at the following...

  • A spherical capacitor is formed from two concentric spherical conducting shells separated by a vacuum. The...

    A spherical capacitor is formed from two concentric spherical conducting shells separated by a vacuum. The inner sphere has a radius of rarar_a = 12.0 cm, and the outer sphere has a radius of rbrbr_b = 14.8 cm. A potential difference of 120 VV is applied to the capacitor. a. What is the capacitance of the capacitor? Use ϵ0ϵ0epsilon_0 = 8.85×10−12 F/mF/m for the permittivity of free space. b. What is the magnitude E1 of the electric field E at...

  • Two charged concentric spherical shells have radii 11.8 cm and 14.0 cm. The charge on the...

    Two charged concentric spherical shells have radii 11.8 cm and 14.0 cm. The charge on the inner shell is 4.81 × 10- 8 C and that on the outer shell is 2.46 × 10- 8 C. Find the electric field (a) at r = 12.7 cm and (b) at r = 22.7 cm.

  • Two charged concentric spherical shells have radii 10.4 cm and 16.8 cm. The charge on the...

    Two charged concentric spherical shells have radii 10.4 cm and 16.8 cm. The charge on the inner shell is 5.63 × 10- 8 C and that on the outer shell is 1.99 × 10- 8 C. Find the electric field (a) at r = 13.9 cm and (b) at r = 38.2 cm.

  • Please answer 1-3 A spherical capacitor is formed from two concentric spherical conducting shells separated by...

    Please answer 1-3 A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has a radius of ra = 12.1 cm , and the outer sphere has a radius of rb = 15.1 cm . A potential difference of 120 V is applied to the capacitor. 1. What is the capacitance of the capacitor? Use ϵ0 = 8.85×10−12 F/m for the permittivity of free space. 2.What is the magnitude E1 of the electric...

  • Two very long concentric conducting cylindrical shells are arranged as seen below. The inner shell has...

    Two very long concentric conducting cylindrical shells are arranged as seen below. The inner shell has a radius a, and the outer shell a radius b. Each shell has a length L. A charge of -Q is spread over the inner shell and a charge of +Q resides on the outer shell. Ignore fringe fields (e.g. assume each cylinder is very long). Find the electric field everywhere in space. Find the potential difference between the two shells. Which one is...

  • A spherical capacitor is formed from two concentric, spherical conducting shells separated by a vacuum.

    A spherical capacitor is formed from two concentric, spherical conducting shells separated by a vacuum. The inner sphere has a radius of 15.0 cm and the capacitance of the device is 116 pF.  a) What is the radius of the outer sphere?  b) If the potential difference between the two spheres is 220 V, how much energy is stored in this capacitor?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT