Question

Given two spheres with a radius of 1 meter, one an insulator and the other a...

Given two spheres with a radius of 1 meter, one an insulator and the other a conductor. Both are charged with 1 C of charge.

a. What is the electric field in both at a distance of 50 cm from the center?

b. What is the electric field for both 2m from the center?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Given two spheres with a radius of 1 meter, one an insulator and the other a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two small insulating spheres with radius 9.00*10^-2m are separated by a large center-to-center distance of 0.520m...

    Two small insulating spheres with radius 9.00*10^-2m are separated by a large center-to-center distance of 0.520m . One sphere is negatively charged, with net charge -2.40uC , and the other sphere is positively charged, with net charge 3.35uC . The charge is uniformly distributed within the volume of each sphere. a) What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ?0 = 8.85

  • Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540...

    Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540 m. One sphere is negatively charged, with net charge -1.35 μC, and the other sphere is positively charged, with net charge 3.85 μC. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2). I tried: 3.57*10*-5 N/C

  • Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540...

    Two small insulating spheres with radius 5.00×10−2m are separated by a large center-to-center distance of 0.540 m. One sphere is negatively charged, with net charge -1.35 μC, and the other sphere is positively charged, with net charge 3.85 μC. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2). I tried: 3.57*10*^-5 N/C, 3.57*10^-5...

  • This is a cross section of two nested spheres. The outer sphere is a thin conductor...

    This is a cross section of two nested spheres. The outer sphere is a thin conductor of radius M with a uniform charge distribution and total excess charge of-20. The inner sphere is a solid insulator of radius J. It has a uniform volume charge density of p and a total charge of +2Q. There is only vacuum between them. Region C +2Q,+p 1.) (2pts) Determine the net charge on the inner and outer surfaces of the thin shell. Region...

  • Two small insulating spheres

    Two small insulating spheres with radius 5.50×10-2 are separated by a large center-to-center distance of 0.575 . One sphere is negatively charged, with net charge-1.25 , and the other sphere is positively charged, with net charge 3.30 . The charge is uniformly distributed within the volume of each sphere.What is the magnitude of the electric field midway between the spheres?Take the permittivity of free space to be = 8.85×10-12 . C^2/(N*m^2)

  • Part A Two small insulating spheres with radius 9.00x10-2 m are separated by a large center-to-center...

    Part A Two small insulating spheres with radius 9.00x10-2 m are separated by a large center-to-center distance of 0.585 m. One sphere is negatively charged, with net charge -1.75 C, and the other sphere is positively charged, with net charge 3.35 C. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be eo = 8.85x10-12 C2/(N m )....

  • Two small insulating spheres with radius 7.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 7.00×10−2 m are separated by a large center-to-center distance of 0.575 m . One sphere is negatively charged, with net charge -1.70 μC , and the other sphere is positively charged, with net charge 3.90 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of 0.575 m . One sphere is negatively charged, with net charge -1.05 μC , and the other sphere is positively charged, with net charge 3.45 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • Two small insulating spheres with radius 6.00×10−2 m are separated by a large center-to-center distance of...

    Two small insulating spheres with radius 6.00×10−2 m are separated by a large center-to-center distance of 0.600 m . One sphere is negatively charged, with net charge -1.05 μC , and the other sphere is positively charged, with net charge 3.30 μC. The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .

  • 5. Two identical conducting small spheres are placed with their centers 0.320 m apart. One is...

    5. Two identical conducting small spheres are placed with their centers 0.320 m apart. One is given a charge of 12.0 nC and the other a charge of -18.0 nC. (a) Find the electric force exerted by one sphere on the other. magnitude [1.9e-o direction toward the other sphere (b) The spheres are connected b on the other after they have come to equilibrium. magnitude 7.90e-07 direction away from the other sphere 6. A rod 16.0 cm long is uniformly...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT