Question

A three-phase load of 15 kVA with a PF of 0.8 lagging is connected in parallel...

A three-phase load of 15 kVA with a PF of 0.8 lagging is connected in parallel with a three-phase load of 36 kW at 0.6 PF leading. The line-line voltage is 2000V. a) Find the total complex power and power factor. Is it inductive or capacitive? b) How much kVAR is needed to make the PF unity? c) What is the magnitude of the current going into the total load?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A three-phase load of 15 kVA with a PF of 0.8 lagging is connected in parallel...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1, Two balanced three-phase loads are in parallel. Load 1 draws 10 kW at 0.8 PF...

    1, Two balanced three-phase loads are in parallel. Load 1 draws 10 kW at 0.8 PF lagging Load 2 draws 20 kVA at 0.6 PF leading a. b. The loads are supplied by a balanced three-phase 480 Vu source. (a) Draw the power triangle for the combined load. (b) Determine PF of the combined load. (c) Determine the magnitude of the line current from the source. (d) Y-connected inductors are now installed in parallel with the combined load. What value...

  • 3. (40 points) Three-phase loads are connected in parallel across a 24 KV (line-line three-phase power...

    3. (40 points) Three-phase loads are connected in parallel across a 24 KV (line-line three-phase power supply. Load 1: 120 KVA at 0.8 power factor leading; Load 2: 180 KW at 0.6 power factor lagging, Load 3: 40 KW at unity power factor Find the total complex power of three loads; (ii) Draw the power triangle of the combined load (ii) Find the overall power factor (iv) Find the line current (magnitude only) in the power supply line.

  • Example 9 Three loads are connected in parallel across 1400 V, 60 Hz supply: Load 1:...

    Example 9 Three loads are connected in parallel across 1400 V, 60 Hz supply: Load 1: 125 KVA, 0.28 PF lag Load 2: 10 kW, 40 kVAR capacitive load Load 3: 15 kW Find the total kW, kVAR, KVA, and the supply power factor . The KVAR and the capacitance in mF of the capacitor needed to improve the PF to 0.8 lagging

  • 8. (15 points) Assume we have a 100 kVA load with power factor pf= 0.8 lagging,...

    8. (15 points) Assume we have a 100 kVA load with power factor pf= 0.8 lagging, and would like to correct the pf to 0.95 leading, please fill the following blanks: The real power before power factor compensation is The real power after power factor compensation is The reactive power before power factor compensation is The reactive power after power factor compensation is kW kW kVAR kVAR

  • A balanced 3-0 source serves the following loads: Load 1: 18 kVA at 0.8 PF lagging...

    A balanced 3-0 source serves the following loads: Load 1: 18 kVA at 0.8 PF lagging Load 2: 10 KVA at 0.7 PF leading Load 3: 12 kW at unity PF Load 4: 16 kVA at 0.6 PF lagging The line voltage across the terminals of the load is 208 Vrms and the line impedance is 0.2 +j0.4/0. Find the line voltage and PF at the source. (3 pt) Real part of the line voltage at the source: (3 pt)...

  • 10. Two loads connected in parallel draw a total of 2.4 kW at 0.8 pflagging from...

    10. Two loads connected in parallel draw a total of 2.4 kW at 0.8 pflagging from a 120-V rms, 60- Hz line. One load absorbs 1.5 kW at a 0.707 pf lagging. Determine: (a) the pf of the second load, INV 11. Calculate the line currents for the system shown in figure. Calculate also the total power and reactive power consumed by the load. w 12. For the balanced three-phase circuit in Fig.. Calculate the line currents, the phase voltage...

  • A three-phase positive sequence Y-connected source supplies 14 kVA with a power factor of 0.75 lagging...

    A three-phase positive sequence Y-connected source supplies 14 kVA with a power factor of 0.75 lagging to a parallel combination of a Y-connected load and a A-connected load. The Y-connected load uses 9 kVA at a power factor of 0.6 lagging and has an a-phase current of 102-30° A. a) Find the complex power per phase of the A-connected load. b) Find the magnitude of the line voltage.

  • 3- Two balanced Y-connected loads in parallel, one drawing 25 kW at 0.6 power factor lagging...

    3- Two balanced Y-connected loads in parallel, one drawing 25 kW at 0.6 power factor lagging and the other drawing 15 kVA at 0.8 power factor leading, are supplied by a balanced, three-phase, 480-volt source. (a) Draw the power triangle for each load and for the combined load. (b) Determine the power factor of the combined load and state whether lagging or leading. (c) Determine the magnitude of the line current from the source. (d) ∆- connected capacitors are now...

  • The following three-phase, balanced loads are connected across a three-phase, Y-connected 60 Hz source with a...

    The following three-phase, balanced loads are connected across a three-phase, Y-connected 60 Hz source with a line-to-line voltage of 480 V. The loads are described below: • Load 1: ∆-connected, total three-phase apparent power is 30 kVA at 0.95 power factor lagging. • Load 2: ∆-connected, total three-phase active power is 20 kW at 0.7 power factor lagging. • Load 3: Y-connected, phase current is 30 A, and power factor is 0.9 pf leading. (a) Calculate the total complex power...

  • A three-phase line with an impedance of (0.25+j1.25) ohms/phase supplies power to three balanced 3-phase parallel...

    A three-phase line with an impedance of (0.25+j1.25) ohms/phase supplies power to three balanced 3-phase parallel connected loads: • Load 1 absorbs a total of 125 kW and 100 KVAR • Load 2 is a delta-connected impedance load with (125+j 40)ohms/phase • Load 3 absorbs 120 kVA at 0.8 power factor (lagging) Given that the line-neutral voltage at the load end of the line is 2400 V, determine the magnitude of the line-to- line voltage at the source end of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT