Question

A distant tuning fork of frequency f produces a plane sound wave that moves along the...

A distant tuning fork of frequency f produces a plane sound wave that moves along the positive x-axis and has an amplitude of A.

Write an expression for the displacement at some time t and position x as a function of x, t, f, A, and the speed of sound (v). (Enter π as pi) y =

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Dear student,
Find this solution.if any issue with that don't forget to write in comment section.I will rectify them as soon as possible.
If you find the solution helpful and kindly RATE THE ANSWER it would be appreciated.
Your rating is important to me.
Thanks for asking..

Add a comment
Know the answer?
Add Answer to:
A distant tuning fork of frequency f produces a plane sound wave that moves along the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A tuning fork produces a pure tone sound. If the tuning fork is hit harder and...

    A tuning fork produces a pure tone sound. If the tuning fork is hit harder and the sound intensity level of the sound produced is increased by 20 decibels, how does the following properties of the sound change... 1) intensity 2) frequency 3) speed Thank you!

  • A tuning fork generates sound waves with a frequency of 232 Hz. The waves travel in...

    A tuning fork generates sound waves with a frequency of 232 Hz. The waves travel in opposite directions along a hallway, are reflected by walls, and return. The hallway is 42.0 m long and the tuning fork is located 14.0 m from one end. What is the phase difference between the reflected waves when they meet at the tuning fork? The speed of sound in air is 343 m/s.

  • A tuning fork generates sound waves with a frequency of 252 Hz. The waves travel in...

    A tuning fork generates sound waves with a frequency of 252 Hz. The waves travel in opposite directions along a hallway, are reflected by walls, and return. The hallway is 47.0 m long and the tuning fork is located 14.0 m from one end. What is the phase difference between the reflected waves when they meet at the tuning fork? The speed of sound in air is 343 m/s. (I got 304.9 and it says "Your response is within 10%...

  • Oscillation of a 280 Hz tuning fork sets up standing waves in a string clamped at...

    Oscillation of a 280 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 630 m/s. The standing wave has four loops and an amplitude of 2.7 mm. (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time. Round numeric coefficients to three significant digits. (a) Number Units ? Edit (b) y (x, t)...

  • The plane sound wave is generated by the source which frequency is v = 400 Hz....

    The plane sound wave is generated by the source which frequency is v = 400 Hz. The amplitude is 8 mm. Find the displacement and velocity of a point at the distance 3 m from a source when t = 0.5s. Velocity of sound wave is 300m/s,   ξ(0,0)-0.

  • 1. A sinusoidal sound wave moves through a medium and W is described by the displacement...

    1. A sinusoidal sound wave moves through a medium and W is described by the displacement wave function s(x, t) = 2.00 cos (15.7x - 858t) where sis in micrometers, x is in meters, and tis in sec- onds. Find (a) the amplitude, (b) the wavelength, and (c) the speed of this wave. (d) Determine the instanta- neous displacement from equilibrium of the elements of the medium at the position x = 0.050 0 m at 1 = 3.00 ms....

  • 1. A sinusoidal sound wave moves through a medium and W is described by the displacement...

    1. A sinusoidal sound wave moves through a medium and W is described by the displacement wave function s(x, t) = 2.00 cos (15.7x – 8581) where sis in micrometers, x is in meters, and tis in sec- onds. Find (a) the amplitude, (b) the wavelength, and (c) the speed of this wave. (d) Determine the instanta- neous displacement from equilibrium of the elements of the medium at the position x = 0.050 0 m at 1 = 3.00 ms....

  • Tutorial Sound Waves . A sound source which produces sound of frequency 300 Hz moves along...

    Tutorial Sound Waves . A sound source which produces sound of frequency 300 Hz moves along a straight line and passes by a stationary observer. The observer notices that the frequency of sound heard change Speed of sound in air 330 m s-1] 0when the sound is moving away from him. Determine the speed of the sound source. its siren emitting a sound of frequency 600.0 Hz moves with a speed of me that the speed of sound is 345...

  • A tuning fork with a frequency of f = 536 Hz is placed near the top...

    A tuning fork with a frequency of f = 536 Hz is placed near the top of the tube shown below. The water level is lowered so that the length L slowly increases from an initial value of 20.0 cm. Determine the next two values of L that correspond to resonant modes. (Assume that the speed of sound in air is 343 m/s.) shorter length m longer length m

  • Question 33 (1 point) A wave is traveling with a speed v along the x axis...

    Question 33 (1 point) A wave is traveling with a speed v along the x axis in the positive direction. The upper graph shows the displacement y versus the distance x for a given instant of time. The lower graph shows the displacement y versus the time t for any given point x. From the information in the 57.m graphs, what is the wave speed v? 8.0 m/s O not enough information provided to solve the problem 6.0 ms/ 4.0...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT