Question

A monatomic ideal gas is taken through a closed cycle. Starting from state 1 with pressure...

A monatomic ideal gas is taken through a closed cycle. Starting from state 1 with pressure P1 and volume V1 the gas expands isothermally (at constant temperature) to volume V2 = 2V1.

It is then compressed at constant pressure back to the original volume V1 and then heated at constant volume to return to the original pressure P1 .

a) Find how much work is performed by this gas during each part of this cycle.

b) Find how much heat is absorbed or released by this gas during each part of this cycle.

c) Find the change in internal energy of this gas during each part of this cycle.

d) If this cycle is used as an engine, what is the efficiency of this cycle?

Represent all your answers in terms of P1 and V1.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A monatomic ideal gas is taken through a closed cycle. Starting from state 1 with pressure...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It...

    102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It is (1) heated at constant pressure to 655 K, (2) then allowed to cool at constant volume until its temperature returns to its initial value, (3) then compressed isothermally to its initial state. Find: a. the net energy transferred as heat to the gas (excluding the energy transferred as heat out of the gas). b. the net work done by the gas for the...

  • A monatomic ideal gas has pressure pi and temperature Ti. It is contained in a cylinder...

    A monatomic ideal gas has pressure pi and temperature Ti. It is contained in a cylinder of volume V1 with a movable piston, so that it can do work on the outside world. Part A Consider the following three-step transformation of the gas: 1. The gas is heated at constant volume until the pressure reaches Apı (where A>1). 2. The gas is then expanded at constant temperature until the pressure returns to Pi. 3. The gas is then cooled at...

  • A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K...

    A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in the figure below). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state. a. Find Q, W, and ΔEint for each of the processes. Q (kJ) W (kJ) Eint (kJ) A → B B → C C → A...

  • A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different...

    A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different paths for expansion. Path 1: The gas expands quasistatically and isothermally to (Va, Pz. T2) Path 2: First the gas expands quasistatically and adiabatically (V2, P.,T-),where you will calculate P T. Then the gas is heated quasistically at constant volume to (Va. P2 T1). a. Sketch both paths on a P-V diagram. b. Calculate the entropy change of the system along all three segments...

  • A 1.00 mole sample of an ideal monatomic gas, originally a pressure of 1.00 atm, undergoing...

    A 1.00 mole sample of an ideal monatomic gas, originally a pressure of 1.00 atm, undergoing a three-step process: • Expands adiabatically from T1 = 588 K to T2 = 300 K • It is compressed at constant pressure until its temperature reaches T3; • Then it returns to its original pressure and temperature using a constant volume process. Calculate cycle efficiency Select one: (Quickly, please :() Calculate cycle efficiency Select one: to. 30.4% b. None of the above options...

  • A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K...

    A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in the figure below). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state. (a) Find the number of moles in the sample. moles (b) Find the temperature at point B. K (c) Find the temperature at point C. K...

  • An ideal gas is allowed to expand isothermally until it reaches its final volume. It is...

    An ideal gas is allowed to expand isothermally until it reaches its final volume. It is then heated at constant volume until it reaches its final pressure. The initial state of the gas is P1 = 2.93 atm, V1 = 1.00 L, and Eint 1 = 414 J, and its final state has volume V2 = 2.93 L and Eint 2 = 951 J. 1) Calculate the work done by the gas. Be careful with signs: if the work you...

  • Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder...

    Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder of 290 K corresponding to the isothermal compression step. Then the volume of the gas is further compressed by a factor of 7.5 in the adiabatic compression step. a) Find the temperature at the final step of the adiabatic compression. b) What is Thot for the isothermal expansion step? c) What is the maximum thermodynamic efficiency for this engine? d) How much would the...

  • A 1.00 mole sample of an ideal monatomic gas, originally at a pressure of 1.00 atm,...

    A 1.00 mole sample of an ideal monatomic gas, originally at a pressure of 1.00 atm, undergoes, undergoes a three-step process.  (1) It is expanded adiabatically from T1 = 550 K, to T2 = 389 K; (2) it is compressed at constant pressure until the temperature reaches T3; (3) it then returns to its original temperature and pressure by a constant volume process. (a) Plot these processes on a PV diagram. (b) Determine T3.  (c) Calculate the change in internal energy, the...

  • Twenty moles of an ideal monatomic gas at 1000 K having a volume of 100 liters...

    Twenty moles of an ideal monatomic gas at 1000 K having a volume of 100 liters perform 1000 J of work while isothermally and reversibly expanding. Show how to compute the initial gas pressure, P1, final gas volume, V2, ΔU and ΔH.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT