Question

1: Consider a string with 36.2 g mass and 39.6 cm length. Determine the linear density...

1: Consider a string with 36.2 g mass and 39.6 cm length. Determine the linear density of the string (in kg/m unit).

2: Consider a string with 26.6 g mass and 90 cm length. If the tension in the string is 1.2 N, then determine the speed of the generated standing waves.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1: Consider a string with 36.2 g mass and 39.6 cm length. Determine the linear density...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A string of length 2.83 m and linear mass density 0.500 g/m, and a string of...

    A string of length 2.83 m and linear mass density 0.500 g/m, and a string of length 3.09 m and linear mass density 0.242 g/m, are tied together and stretched to a tension of 150 N. How long, in seconds, will it take a transverse wave to travel the entire length of the two wires?

  • A nylon guitar string has a linear density of 4.46 g/m and is under a tension...

    A nylon guitar string has a linear density of 4.46 g/m and is under a tension of 126 N. The fixed supports are D = 72.7 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the (a) speed, (b) wavelength, and (c) frequency of the traveling waves whose superposition gives this standing wave.

  • a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is...

    a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is fixed at both ends and driven at 120 Hz. The tension is varied to obtain standing waves (resonance) on the string. 1. what is the longest wavelength for a standing wave possible on the string? 2. the tension on the string is varies to obtain fourth harmonic a. what is the wavelength of this standing wave? b. what is the wave speed 3. what...

  • A nylon guitar string has a linear density of 33.9 g/m and is under a tension...

    A nylon guitar string has a linear density of 33.9 g/m and is under a tension of 296.0 N. The fixed supports are distance L 88.5 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the speed of the traveling waves whose superposition gives this standing wave. Submit Answer Tries o/99 Calculate the wavelength of the traveling waves whose superposition gives this standing wave Submit Answer Tries 0/99 Calculate the frequency of the...

  • 10-15 pls 010 10.0 points A sinusoidal transverse wave travels along a wire of linear density...

    10-15 pls 010 10.0 points A sinusoidal transverse wave travels along a wire of linear density 8.34 g/m. The wave has amplitude 1.2 cm, frequency 132 Hz and wavelength 3.07 m What is the tension of the wire? Answer in units of N 011 (part 1 of 2) 10.0 points A standing wave is formed on a string that is 32 m long, has a mass per unit length 0.00512 kg/m, and is stretched to a tension of 18 N...

  • A nylon guitar string has a linear density of 6.01 g/m and is under a tension...

    A nylon guitar string has a linear density of 6.01 g/m and is under a tension of 196 N. The fixed supports are D - 55.6 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the (a) speed, (b) wavelength, and (c) frequency of the traveling waves whose superposition gives this standing wave (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question:...

  • A string with a linear mass density of 0.0080 kg/m and a length of 6.40 m...

    A string with a linear mass density of 0.0080 kg/m and a length of 6.40 m is set into the n = 4 mode of resonance by driving with a frequency of 110.00 Hz. What is the tension in the string (in N)?

  • In the arrangement shown below, an object can be hung from a string (with linear mass...

    In the arrangement shown below, an object can be hung from a string (with linear mass density μ = 0.002 00 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is L = 2.30 m. When the mass m of the object is either 9.0 kg or 16.0 kg, standing waves are observed; no standing waves are observed with...

  • Standing Waves: Calculate the mass density of the following string: m=35.0 g L=75cm Mass per unit...

    Standing Waves: Calculate the mass density of the following string: m=35.0 g L=75cm Mass per unit length= ?? kg/m Knowing the velocity of a wave in the string, we can calculate the frequencies and wavelengths of the harmonics in the string using: wavelength_n=2L/n f_n=f_1 f_1=v/2L (n=1,2,3...) Draw the standing wave and calculate the wavelength and frequency for the following harmonics, assuming a string with a length of 2.0 m. Harmonic number Wavelength Frequency Draw the standing wave n=1 Wavelength_1=? f_1=?...

  • 13.18 A string with a length of 125 cm and a mass of 2.15 g is...

    13.18 A string with a length of 125 cm and a mass of 2.15 g is stretched with a tension of 425 N a) What is the speed of waves on the string? b) What is the fundamental frequency of the string? c) What is the wavelength of the third harmonic? d) What is the frequency of the third harmonic?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT