Question

A 0.3 kg horizontal mass-spring system undergoes SHM. The period is 0.60 s. When the mass...

A 0.3 kg horizontal mass-spring system undergoes SHM. The period is 0.60 s. When the mass passes its equilibrium position it has a speed of 1.5 m/s. Assuming the surface is frictionless, what is the total mechanical energy and the amplitude of the system?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

mechanical energy of system

U = 0.5 m v^2 = 0.5* 0.3* 1.5* 1.5 = 0.03375 J

=====

also

v = A (2 pi / T)

1.5 = A ( 2 pi / 0.6)

A = 0.1433 m

=====

Comment before rate in case any doubt, will reply for sure.. goodluck

Add a comment
Know the answer?
Add Answer to:
A 0.3 kg horizontal mass-spring system undergoes SHM. The period is 0.60 s. When the mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.60 kg mass is attached to a light spring with a force constant of 30.9...

    A 0.60 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A horizontal mass-spring system consists of a 2 kg mass moving on a frictionless surface attached...

    A horizontal mass-spring system consists of a 2 kg mass moving on a frictionless surface attached to a spring. The other end of the spring is attached to a wall. The mass is pulled and released. The resultant simple harmonic motion has a period of 5 s and it is observed that the maximum velocity of the mass is 0.3 m/s. a) Calculate the spring constant of the spring. (b) Calculate the amplitude of the motion. Sometime later, when the...

  • A block of mass 0.21 kg connected to a spring with spring constant 37 N/m is...

    A block of mass 0.21 kg connected to a spring with spring constant 37 N/m is oscillating on a frictionless horizontal surface. Its speed as it passes through its equilibrium position is 0.88 m/s. What is the total energy of the system in J?

  • An undamped 2.19 kg horizontal spring oscillator has a spring constant of 34.5 Nm. While oscillating,...

    An undamped 2.19 kg horizontal spring oscillator has a spring constant of 34.5 Nm. While oscillating, it is found to have a speed of 2.50 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? amplitude of oscillation: What is the oscillator's total mechanical energy as it passes through a position that is 0.584 of the amplitude away from the equilibrium position? total mechanical energy:

  • An undamped 2.87 kg horizontal spring oscillator has a spring constant of 26.5 N/m. While oscillating,...

    An undamped 2.87 kg horizontal spring oscillator has a spring constant of 26.5 N/m. While oscillating, it is found to have a speed of 3.02 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? amplitude of oscillation: What is the oscillator's total mechanical energy as it passes through a position that is 0.629 of the amplitude away from the equilibrium position? total mechanical energy:

  • A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to...

    A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to a spring (k = 750 N/m). The system is initially at rest and is in equilibrium MI Second DIOCK (M=1.5 kg) approaches with a speed of 3.5 m/s and undergoes all inelastic collision with the first block (i.e.. they stick together after the collision). (a) What is the amplitude of the resulting simple harmonic motion (in cm)? (b) What is the angular frequency (w)...

  • An undamped 1.02-kg horizontal spring oscillator has a spring constant of 29.9 N/m. While oscillating, it...

    An undamped 1.02-kg horizontal spring oscillator has a spring constant of 29.9 N/m. While oscillating, it is found to have a speed of 2.21 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? What is the oscillator\'s total mechanical energy as it passes through a position that is 0.701 of the amplitude away from the equilibrium position?

  • An undamped 2.74-kg horizontal spring oscillator has a spring constant of 32.2 N/m. While oscillating, it...

    An undamped 2.74-kg horizontal spring oscillator has a spring constant of 32.2 N/m. While oscillating, it is found to have a speed of 3.01 m/s as it passes through its equilibrium position. A. What is its amplitude of oscillation? B.What is the oscillator's total mechanical energy as it passes through a position that is 0.527 of the amplitude away from the equilibrium position?

  • A 0.64 kg mass is attached to a light spring with a force constant of 23.9...

    A 0.64 kg mass is attached to a light spring with a force constant of 23.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass _____ m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm _____ m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...

  • 5. (3 points) A mass-spring system is in SHM in the horizontal direction. If the mass...

    5. (3 points) A mass-spring system is in SHM in the horizontal direction. If the mass of 1.2 kg, the spring constant is 15 N/m and the amplitude is 20.0 cm, what is the speed of the mass at the moment when the displacement is 10.0 cm. Hint: Speed is always expressed as a nonnegative number (positive number or zero)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT